Drummond

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Original Drummond Lab entry)
(About the lab)
Line 1: Line 1:
-
[[Image:ATempPic.jpg|750px]]
+
<!-- [[Image:ATempPic.jpg|750px]] -->
-
<div style="color: #ffffff; background-color: #000; width: 90%">
+
<div style="color: #FFFFFF; background-color: #996699">
<center>
<center>
-
[[Drummond|  '''Home''' ]]
+
[[Drummond|  '''Home''' ]] &nbsp;&nbsp;&nbsp;&nbsp;
-
[[Drummond:Contact |  '''Contact''' ]]  
+
[[Drummond:Contact |  '''Contact''' ]] &nbsp;&nbsp;&nbsp;&nbsp;
-
[[Drummond:Back Door |  '''Internal''' ]]  
+
[[Drummond:Publications |  '''Publications''' ]] &nbsp;&nbsp;&nbsp;&nbsp;
-
[[Drummond:Lab Members |  '''Lab Members''' ]]  
+
[[Drummond:Research |  '''Research''' ]] &nbsp;&nbsp;&nbsp;&nbsp;
-
[[Drummond:Reprints |  '''Publications''' ]]  
+
[[Drummond:Back Door |  '''Internal''' ]] &nbsp;&nbsp;&nbsp;&nbsp;
-
[[Drummond:Research |  '''Research''' ]]  
+
[[Drummond:Lab Members |  '''Lab Members''' ]] &nbsp;&nbsp;&nbsp;&nbsp;
[[Drummond:Talks |  '''Talks''' ]]  
[[Drummond:Talks |  '''Talks''' ]]  
</center>
</center>
</div><br>
</div><br>
-
{|cellspacing="5" cellpadding="10" style="background:#000; width: 750px;"
+
== The Drummond Lab at Harvard ==
-
|-valign="top"
+
To carry out biological functions, a protein must fold into a complex structure encoded by its amino-acid sequence. When this sequence is changed, for example by DNA mutations or errors in protein synthesis, the protein may misfold, not only losing its function but becoming a toxic, aggregation-prone rogue.
-
|style="background:#ffffff"|
+
-
== General ==
+
-
[[Drummond Lab:Lab Supplies|Lab Supplies]]
+
-
[[Drummond Lab:Lab Chores|Lab Chores]]
+
Protein misfolding profoundly shapes organism fitness (including human health): it is a cause of major human diseases, a requirement for proper immune-system function, and a dominant determinant of the fitness effects of mutations in protein-coding genes. Yet little is known about the dominant causes, amounts or consequences of protein misfolding at the scales of whole genomes and organisms. What fraction of newly synthesized proteins misfold? Are some classes of proteins exceptionally robust to mistranslation? If so, what phenotypic consequences result from compromising that robustness?
-
[[Drummond Lab:Safety|Lab Safety]]
+
We are exploring the scope, scale and causes of protein misfolding and its effects on organism fitness, with a strong focus on newly synthesized proteins. Using the yeast <i>Saccharomyces cerevisiae</i> as a model system, our research will combine evolutionary genomics, which reveals broad patterns of fitness imprinted in DNA, with system- and molecule-level misfolding studies that illuminate the conserved biochemistry underlying these patterns.
== Group Meetings ==
== Group Meetings ==
Line 26: Line 23:
[[Drummond Lab:Lab Meetings|Notes for Meetings]]
[[Drummond Lab:Lab Meetings|Notes for Meetings]]
-
 
-
== Other ==
 
-
|}<br style="clear:both" />
 

Revision as of 19:55, 28 January 2007

Home      Contact      Publications      Research      Internal      Lab Members      Talks


The Drummond Lab at Harvard

To carry out biological functions, a protein must fold into a complex structure encoded by its amino-acid sequence. When this sequence is changed, for example by DNA mutations or errors in protein synthesis, the protein may misfold, not only losing its function but becoming a toxic, aggregation-prone rogue.

Protein misfolding profoundly shapes organism fitness (including human health): it is a cause of major human diseases, a requirement for proper immune-system function, and a dominant determinant of the fitness effects of mutations in protein-coding genes. Yet little is known about the dominant causes, amounts or consequences of protein misfolding at the scales of whole genomes and organisms. What fraction of newly synthesized proteins misfold? Are some classes of proteins exceptionally robust to mistranslation? If so, what phenotypic consequences result from compromising that robustness?

We are exploring the scope, scale and causes of protein misfolding and its effects on organism fitness, with a strong focus on newly synthesized proteins. Using the yeast Saccharomyces cerevisiae as a model system, our research will combine evolutionary genomics, which reveals broad patterns of fitness imprinted in DNA, with system- and molecule-level misfolding studies that illuminate the conserved biochemistry underlying these patterns.

Group Meetings

Snack Schedule

Notes for Meetings

Personal tools