Drummond:PopGen

From OpenWetWare
Revision as of 06:03, 14 July 2008 by Dadrummond (talk | contribs)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Per-generation and instantaneous growth rates

Let [math]\displaystyle{ n_i(t) }[/math] be the number of organisms of type [math]\displaystyle{ i }[/math] at time [math]\displaystyle{ t }[/math], and let [math]\displaystyle{ R }[/math] be the per-capita reproductive rate per generation. If [math]\displaystyle{ t }[/math] counts generations, then

[math]\displaystyle{ n_i(t+1) = n_i(t)R\! }[/math]
and
[math]\displaystyle{ n_i(t) = n_i(0)R^t.\! }[/math]

Now we wish to move to the case where [math]\displaystyle{ t }[/math] is continuous and real-valued. As before,

[math]\displaystyle{ n_i(t+1) = n_i(t)R\! }[/math]
but now
[math]\displaystyle{ n_i(t+\Delta t)\! }[/math] [math]\displaystyle{ =n_i(t)R^{\Delta t}\! }[/math]
[math]\displaystyle{ n_i(t+\Delta t) - n_i(t)\! }[/math] [math]\displaystyle{ = n_i(t)R^{\Delta t} - n_i(t)\! }[/math]
[math]\displaystyle{ \frac{n_i(t+\Delta t) - n_i(t)}{\Delta t} }[/math] [math]\displaystyle{ =\frac{n_i(t)R^{\Delta t} - n_i(t)}{\Delta t} }[/math]
[math]\displaystyle{ \frac{n_i(t+\Delta t) - n_i(t)}{\Delta t} }[/math] [math]\displaystyle{ =n_i(t) \frac{R^{\Delta t} - 1}{\Delta t} }[/math]
[math]\displaystyle{ \lim_{\Delta t \to 0} \left[{n_i(t+\Delta t) - n_i(t) \over \Delta t}\right] }[/math] [math]\displaystyle{ =\lim_{\Delta t \to 0} \left[ n_i(t) \frac{R^{\Delta t} - 1}{\Delta t}\right] }[/math]
[math]\displaystyle{ \frac{d n_i(t)}{dt} }[/math] [math]\displaystyle{ =n_i(t) \lim_{\Delta t \to 0} \left[\frac{R^{\Delta t} - 1}{\Delta t}\right] }[/math]
[math]\displaystyle{ \frac{d n_i(t)}{dt} }[/math] [math]\displaystyle{ =n_i(t) \ln R\! }[/math]

where the last simplification follows from L'Hôpital's rule. Explicitly, let [math]\displaystyle{ \epsilon=\Delta t }[/math]. Then

[math]\displaystyle{ \lim_{\Delta t \to 0} \left[{R^{\Delta t} - 1 \over \Delta t}\right] }[/math] [math]\displaystyle{ = \lim_{\epsilon \to 0} \left[\frac{R^{\epsilon} - 1}{\epsilon}\right] }[/math]
[math]\displaystyle{ =\lim_{\epsilon \to 0} \left[\frac{\frac{d}{d\epsilon}\left(R^{\epsilon} - 1\right)}{\frac{d}{d\epsilon}\epsilon}\right] }[/math]
[math]\displaystyle{ =\lim_{\epsilon \to 0} \left[\frac{R^{\epsilon}\ln R}{1}\right] }[/math]
[math]\displaystyle{ =\ln R \lim_{\epsilon \to 0} \left[R^{\epsilon}\right] }[/math]
[math]\displaystyle{ =\ln R\! }[/math]

The solution to the equation

[math]\displaystyle{ \frac{d n_i(t)}{dt} = n_i(t) \ln R }[/math]
is
[math]\displaystyle{ n_i(t) = n_i(0) e^{t\ln R} = n_i(0) R^{t}.\! }[/math]
Note that the continuous case and the original discrete-generation case agree for all values of [math]\displaystyle{ t }[/math]. We can define the instantaneous rate of increase [math]\displaystyle{ r = \ln R }[/math] for convenience.

Continuous-time approximation

Diffusion approximation