Drummond:PopGen

From OpenWetWare
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Per-generation and instantaneous growth rates

Let [math]\displaystyle{ n_i(t) }[/math] be the number of organisms of type [math]\displaystyle{ i }[/math] at time [math]\displaystyle{ t }[/math], and let [math]\displaystyle{ R }[/math] be the per-capita reproductive rate per generation. If [math]\displaystyle{ t }[/math] counts generations, then

[math]\displaystyle{ n_i(t+1) = n_i(t)R\! }[/math]
and
[math]\displaystyle{ n_i(t) = n_i(0)R^t.\! }[/math]

Now we wish to move to the case where [math]\displaystyle{ t }[/math] is continuous and real-valued. As before,

[math]\displaystyle{ n_i(t+1) = n_i(t)R\! }[/math]
but now
[math]\displaystyle{ n_i(t+\Delta t)\! }[/math] [math]\displaystyle{ =n_i(t)R^{\Delta t}\! }[/math]
[math]\displaystyle{ n_i(t+\Delta t) - n_i(t)\! }[/math] [math]\displaystyle{ = n_i(t)R^{\Delta t} - n_i(t)\! }[/math]
[math]\displaystyle{ \frac{n_i(t+\Delta t) - n_i(t)}{\Delta t} }[/math] [math]\displaystyle{ =\frac{n_i(t)R^{\Delta t} - n_i(t)}{\Delta t} }[/math]
[math]\displaystyle{ \frac{n_i(t+\Delta t) - n_i(t)}{\Delta t} }[/math] [math]\displaystyle{ =n_i(t) \frac{R^{\Delta t} - 1}{\Delta t} }[/math]
[math]\displaystyle{ \lim_{\Delta t \to 0} \left[{n_i(t+\Delta t) - n_i(t) \over \Delta t}\right] }[/math] [math]\displaystyle{ =\lim_{\Delta t \to 0} \left[ n_i(t) \frac{R^{\Delta t} - 1}{\Delta t}\right] }[/math]
[math]\displaystyle{ \frac{d n_i(t)}{dt} }[/math] [math]\displaystyle{ =n_i(t) \lim_{\Delta t \to 0} \left[\frac{R^{\Delta t} - 1}{\Delta t}\right] }[/math]
[math]\displaystyle{ \frac{d n_i(t)}{dt} }[/math] [math]\displaystyle{ =n_i(t) \ln R\! }[/math]

where the last simplification follows from L'Hôpital's rule. Explicitly, let [math]\displaystyle{ \epsilon=\Delta t }[/math]. Then

[math]\displaystyle{ \lim_{\Delta t \to 0} \left[{R^{\Delta t} - 1 \over \Delta t}\right] }[/math] [math]\displaystyle{ = \lim_{\epsilon \to 0} \left[\frac{R^{\epsilon} - 1}{\epsilon}\right] }[/math]
[math]\displaystyle{ =\lim_{\epsilon \to 0} \left[\frac{\frac{d}{d\epsilon}\left(R^{\epsilon} - 1\right)}{\frac{d}{d\epsilon}\epsilon}\right] }[/math]
[math]\displaystyle{ =\lim_{\epsilon \to 0} \left[\frac{R^{\epsilon}\ln R}{1}\right] }[/math]
[math]\displaystyle{ =\ln R \lim_{\epsilon \to 0} \left[R^{\epsilon}\right] }[/math]
[math]\displaystyle{ =\ln R\! }[/math]

The solution to the equation

[math]\displaystyle{ \frac{d n_i(t)}{dt} = n_i(t) \ln R }[/math]
is
[math]\displaystyle{ n_i(t) = n_i(0) e^{t\ln R} = n_i(0) R^{t}.\! }[/math]
Note that the continuous case and the original discrete-generation case agree for all values of [math]\displaystyle{ t }[/math]. We can define the instantaneous rate of increase [math]\displaystyle{ r = \ln R }[/math] for convenience.

Continuous rate of change

Let [math]\displaystyle{ r_1 }[/math] and [math]\displaystyle{ r_2 }[/math] be the instantaneous rates of increase of type 1 and type 2, respectively. Then

[math]\displaystyle{ {dn_i(t) \over dt} = r_i n_i(t). }[/math]

With the total population size

[math]\displaystyle{ n(t) = n_1(t) + n_2(t)\! }[/math]

we have the proportion of type 1

[math]\displaystyle{ p(t) = {n_1(t) \over n(t)} }[/math]

Define the fitness advantage

[math]\displaystyle{ s \equiv s_{12} = r_1 - r_2\! }[/math]

Given our interest in understanding the change in gene frequencies, our goal is to compute the rate of change of [math]\displaystyle{ p(t) }[/math].

[math]\displaystyle{ {\partial p(t) \over \partial t} }[/math] [math]\displaystyle{ = {\partial \over \partial t}\left({n_1(t) \over n(t)}\right) }[/math]
[math]\displaystyle{ = {\partial n_1(t) \over \partial t}\left({1 \over n(t)}\right) + n_1(t){-1 \over n(t)^2}{\partial n(t) \over \partial t} }[/math]
[math]\displaystyle{ = {\partial n_1(t) \over \partial t}\left({1 \over n(t)}\right) + n_1(t){-1 \over n(t)^2}\left({\partial n_1(t) \over \partial t} + {\partial n_2(t) \over \partial t}\right) }[/math]
[math]\displaystyle{ = \left({r_1 n_1(t) \over n(t)}\right) - {n_1(t) \over n(t)^2}\left(r_1 n_1(t) + r_2 n_2(t)\right) }[/math]
[math]\displaystyle{ = \left({r_1 n_1(t) \over n(t)}\right) - {n_1(t) \over n(t)^2}\left(r_1 n_1(t) + (r_1-s)(n(t)-n_1(t))\right) }[/math]
[math]\displaystyle{ = \left({r_1 n_1(t) \over n(t)}\right) - {n_1(t) \over n(t)^2}\left(r_1 n(t) -s n(t) + s n_1(t))\right) }[/math]
[math]\displaystyle{ = {n_1(t) \over n(t)^2}\left(s n(t) - s n_1(t))\right) }[/math]
[math]\displaystyle{ = s{n_1(t) \over n(t)}\left(1 - {n_1(t) \over n(t)}\right) }[/math]
[math]\displaystyle{ = s p(t)(1-p(t))\! }[/math]

The logit function [math]\displaystyle{ \mathrm{logit} (p) = \ln {p \over 1-p} }[/math], which takes [math]\displaystyle{ p \in [0,1] \to \mathbb{R} }[/math], induces a more natural space for considering changes in frequencies. In logit terms,

Diffusion approximation

Insert math here.