Farre Lab

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
Current revision (12:53, 23 July 2014) (view source)
 
(11 intermediate revisions not shown.)
Line 7: Line 7:
[[Farre Lab:Research |<h3><font style="color:#228B22;">Research</font></h3>]]
[[Farre Lab:Research |<h3><font style="color:#228B22;">Research</font></h3>]]
-
Our goal is to understand how circadian clocks work and why they play such a key role in growth and development.  
+
Our goal is to understand how circadian clocks work and why they play such a key role in growth and development. We study the regulation and role of circadian rhythms in plants and alga. Circadian rhythms are necessary for optimal growth and survival in several photosynthetic species, including ''Chlamydomonas rheinhardtii'', ''Synechocystes'' sp. and ''Arabidopsis thaliana''. Although circadian clocks share a basic architecture, they differ in their molecular components and appear to not to be conserved between different taxa.  
-
We study the regulation and role of circadian rhythms in plants, which as sessile and autotrophic organisms rely heavily on daily and seasonal changes for their development and growth. Recent findings show that the appropriate resonance of internal rhythms with daily environmental rhythms optimizes plant growth and survival. During the last few years, a large number of clock components have been identified in plants. However, knowledge of the molecular mechanisms involved in plant circadian clocks lags behind studies in other organisms such as Drosophila and Cyanobacteria. Although circadian clocks share a basic architecture among different taxa, they differ in their molecular components. Thus the study of circadian rhythms in plants will help define not only their role on plant specific processes but also the design principles of circadian oscillators.  
+
We work on the model plant ''Arabidopsis thaliana'' and have recently started analyzing rhythms in the heterokont alga ''Nannochloropsis oceanica''.  
[[Farre_Lab:Research | read more...]]
[[Farre_Lab:Research | read more...]]
Line 17: Line 17:
*[[Farre_Lab:Eva_Farre|Eva Farre]]
*[[Farre_Lab:Eva_Farre|Eva Farre]]
-
*[[Farre_Lab:Tomomi Takeuchi|Tomomi Takeuchi]]
 
*[[Farre_Lab:Linsey Newton|Linsey Newton]]
*[[Farre_Lab:Linsey Newton|Linsey Newton]]
*[[Farre_Lab:Tiffany Liu|Tiffany Liu]]
*[[Farre_Lab:Tiffany Liu|Tiffany Liu]]
-
*[[Farre_Lab:Andrew Lapinsky|Andrew Lapinsky]]
 
*[[USer:Eric R Poliner|Eric Poliner]]
*[[USer:Eric R Poliner|Eric Poliner]]
-
*[[USer:Adrian Hülsewede|Adrian Hülsewede]]
+
*[[USer:Tyler Messenger|Tyler Messenger]]
-
 
+
*[[Farre_Lab:Elyse Horak|Elyse Horak]]
*[[Farre_Lab:Open_positions|Open Positions:
*[[Farre_Lab:Open_positions|Open Positions:
Undergraduate assistant]]
Undergraduate assistant]]
Line 35: Line 33:
[[Farre_Lab:Publications |<h3><font style="color:#F8B603;">Publications</font></h3>]]
[[Farre_Lab:Publications |<h3><font style="color:#F8B603;">Publications</font></h3>]]
-
*Liu T, Carlsson J, Takeuchi T, Newton L (in press) Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal.[http://www.ncbi.nlm.nih.gov/pubmed/23808423 PubMed]
+
*Takeuchi T, Newton L, Burkhardt A, Mason S, Farre EM. Light and the circadian clock mediate time specific changes in sensitivity to UV-B stress under light/dark cycles. Journal of Experimental Botany (in press).
-
*Farré EM, Liu T (in press) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol.[http://www.ncbi.nlm.nih.gov/pubmed/23856081 PubMed]  
+
*Braun R, Farré EM, Schurr U, Matsubara S (in press) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. Journal of Phycology 50(1):515–525 [http://onlinelibrary.wiley.com/doi/10.1111/jpy.12177/abstract]
 +
*Liu T, Carlsson J, Takeuchi T, Newton L (2013) Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal.Plant J 76(1):101-14[http://www.ncbi.nlm.nih.gov/pubmed/23808423 PubMed]
 +
*Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16(5):621-9[http://www.ncbi.nlm.nih.gov/pubmed/23856081 PubMed]  
*Vieler et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. Plos Genetics8(11):e1003064. [http://www.ncbi.nlm.nih.gov/pubmed?term=Plos%20Genetics%20Vieler%20Benning Pubmed]
*Vieler et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. Plos Genetics8(11):e1003064. [http://www.ncbi.nlm.nih.gov/pubmed?term=Plos%20Genetics%20Vieler%20Benning Pubmed]
*Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15(3):293-300. [http://www.ncbi.nlm.nih.gov/pubmed/22305520 PubMed]
*Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15(3):293-300. [http://www.ncbi.nlm.nih.gov/pubmed/22305520 PubMed]
Line 42: Line 42:
*Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398-402.[http://www.ncbi.nlm.nih.gov/pubmed/21753751 PubMed]
*Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398-402.[http://www.ncbi.nlm.nih.gov/pubmed/21753751 PubMed]
*Dong M, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108(17):7241-6.[http://www.ncbi.nlm.nih.gov/pubmed/21471455 PubMed]
*Dong M, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108(17):7241-6.[http://www.ncbi.nlm.nih.gov/pubmed/21471455 PubMed]
-
 
-
*Farre EM and Kay SA (2007) PRR7 Protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J 52 (3):548–560.
 
Line 52: Line 50:
[[Farre_Lab:Research |<h3><font style="color:#F8B603;">Announcements</font></h3>]]
[[Farre_Lab:Research |<h3><font style="color:#F8B603;">Announcements</font></h3>]]
 +
* Andrew Lapinsky has been awarded the Bessey Award for Outstanding Senior in Plant Biology. Congratulations!
*[[Farre_Lab:Announcements | Group meeting, journal clubs, and seminars]]<br>
*[[Farre_Lab:Announcements | Group meeting, journal clubs, and seminars]]<br>
-
*[http://news.msu.edu/story/grand-opening-to-celebrate-new-msu-plant-science-building/| Our Lab has moved to the new Plant Molecular Science Building]
+
*[[Media:201404330-Map-MPSB.jpg| Our Lab has moved to the new Plant Molecular Science Building]]
|-valign="top"
|-valign="top"
|style="padding: 5px; background-color: #ffffff; border: 2px solid red;" |
|style="padding: 5px; background-color: #ffffff; border: 2px solid red;" |

Current revision

Image:Logo2b-sm1.jpg


Home        Research        Publications        People        Links        Teaching        Contact       


Research

Our goal is to understand how circadian clocks work and why they play such a key role in growth and development. We study the regulation and role of circadian rhythms in plants and alga. Circadian rhythms are necessary for optimal growth and survival in several photosynthetic species, including Chlamydomonas rheinhardtii, Synechocystes sp. and Arabidopsis thaliana. Although circadian clocks share a basic architecture, they differ in their molecular components and appear to not to be conserved between different taxa.

We work on the model plant Arabidopsis thaliana and have recently started analyzing rhythms in the heterokont alga Nannochloropsis oceanica.

read more...

Lab Members


Publications

  • Takeuchi T, Newton L, Burkhardt A, Mason S, Farre EM. Light and the circadian clock mediate time specific changes in sensitivity to UV-B stress under light/dark cycles. Journal of Experimental Botany (in press).
  • Braun R, Farré EM, Schurr U, Matsubara S (in press) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. Journal of Phycology 50(1):515–525 [1]
  • Liu T, Carlsson J, Takeuchi T, Newton L (2013) Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal.Plant J 76(1):101-14PubMed
  • Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16(5):621-9PubMed
  • Vieler et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. Plos Genetics8(11):e1003064. Pubmed
  • Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15(3):293-300. PubMed
  • Farre EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14(3):401-10.PubMed
  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398-402.PubMed
  • Dong M, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108(17):7241-6.PubMed


see complete list...

Announcements

Links

Funding

  • NSF
  • MSU
Personal tools