Farre Lab: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(109 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Template: Farre}}
{{Template: Farre}}
<div>
 
|
{| cellspacing="2px" cellpadding="0" border="0" style="padding: 0px; width: 700px; color: #000000; background-color: #ffffff;"
{| cellspacing="2px" cellpadding="0" border="0" style="padding: 0px; width: 700px; color: #000000; background-color: #ffffff;"
|-valign="top"
|-valign="top"
|width=450px style="padding: 5px; background-color: #ffffff; border: 2px solid #F8B603;" |
|width=450px style="padding: 5px; background-color: #ffffff; border: 2px solid #228B22;" |


<h3><font style="color:#F8B603;">Research</font></h3>
[[Farre Lab:Research |<h3><font style="color:#228B22;">Research</font></h3>]]


How do organisms adapt to different environments?  We are interested in understanding the genetic and molecular changes that take place as organisms adapt to different environments.   Which genes change, what types of genetic changes occur, and how do these changes affect the organism at the biochemical, physiological, and ecological levels?
Our goal is to understand how circadian clocks work and why they play such a key role in growth and development. We study the regulation and role of circadian rhythms in plants and alga. Circadian rhythms are necessary for optimal growth and survival in several photosynthetic species, including ''Chlamydomonas rheinhardtii'', ''Synechocystes'' sp. and ''Arabidopsis thaliana''. Although circadian clocks share a basic architecture, they differ in their molecular components and appear to not to be conserved between different taxa.


Since plants are rooted in their environment, they are particularly adept at coping with their environment.  Furthermore different species, and populations within species, have adapted to different environments.  Therefore plants are well suited for studying adaptation mechanisms.
We work on the model plant ''Arabidopsis thaliana'' and have recently started analyzing rhythms in the heterokont alga ''Nannochloropsis oceanica''.  


Because light is fundamental to plant growth, we have focused on how plants sense and respond to environmental light cues.   We are focused on light perception by the phytochrome photoreceptors.   Phytochromes sense red and far-red light and provide information about the density of neighboring foliage (among other things).
[[Farre_Lab:Research | read more...]]
|width=135px style="padding: 5px; background-color: #ffffff; border: 2px solid #FF4500;" |


We work on ''Arabidopsis thaliana'' and related species and use a combination of molecular genetic, quantitative genetic, and molecular evolution techniques.  Please see [http://www.naturalvariation.org naturalvariation.org] for information about some of our collaborators who are taking similar approaches.
[[Farre_Lab:People |<h3><font style="color:#FF4500;">Lab Members</font></h3>]]


[[Maloof_Lab:Research | read more...]]
*[[Farre_Lab:Eva_Farre|Eva Farre]]
|width=135px style="padding: 5px; background-color: #ffffff; border: 2px solid #C9D3EB;" |
*[[Farre_Lab:Linsey Newton|Linsey Newton]]
 
*[[Farre_Lab:Tiffany Liu|Tiffany Liu]]
*<h3><font style="color:#C9D3EB;">Lab Members</font></h3>
*[[Farre_Lab:Andrew Lapinsky|Andrew Lapinsky]]
*[[USer:Eric R Poliner|Eric Poliner]]
*[[USer:Tyler Messenger|Tyler Messenger]]


*[[Farre_Lab:Eva_Farre|Eva Farre]]
*[[Farre_Lab:Open_positions|Open Positions:
*[[Farre_Lab:Open_positions|Open Positions]]
Undergraduate assistant]]




Line 29: Line 31:
{| cellspacing="2px" cellpadding="0" border="0" style="padding: 0px; width: 700px; color: #000000; background-color: #ffffff;"
{| cellspacing="2px" cellpadding="0" border="0" style="padding: 0px; width: 700px; color: #000000; background-color: #ffffff;"
|-valign="top"
|-valign="top"
|width=300px rowspan=2 style="padding: 5px; background-color: #ffffff; border: 2px solid #C9D3EB;" |
|width=300px rowspan=2 style="padding: 5px; background-color: #ffffff; border: 2px solid #F8B603;" |


<h3><font style="color:#C9D3EB;">Publications</font></h3>  
[[Farre_Lab:Publications |<h3><font style="color:#F8B603;">Publications</font></h3>]]
*Braun R, Farré EM, Schurr U, Matsubara S (in press) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. Journal of Phycology [http://onlinelibrary.wiley.com/doi/10.1111/jpy.12177/abstract]
*Liu T, Carlsson J, Takeuchi T, Newton L (2013) Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal.Plant J 76(1):101-14[http://www.ncbi.nlm.nih.gov/pubmed/23808423 PubMed]
*Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16(5):621-9[http://www.ncbi.nlm.nih.gov/pubmed/23856081 PubMed]
*Vieler et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. Plos Genetics8(11):e1003064. [http://www.ncbi.nlm.nih.gov/pubmed?term=Plos%20Genetics%20Vieler%20Benning Pubmed]
*Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15(3):293-300. [http://www.ncbi.nlm.nih.gov/pubmed/22305520 PubMed]
*Farre EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14(3):401-10.[http://www.ncbi.nlm.nih.gov/pubmed/22284304 PubMed]
*Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398-402.[http://www.ncbi.nlm.nih.gov/pubmed/21753751 PubMed]
*Dong M, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108(17):7241-6.[http://www.ncbi.nlm.nih.gov/pubmed/21471455 PubMed]


*Filiault DL, Wessinger CA, Dinneny JR, Lutes J, Borevitz JO, Weigel D, Chory J and Maloof JN. (2008) Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. [http://www.pnas.org/cgi/content/full/105/8/3157 PNAS 105, 3157-3162].


*Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN. (2007) Rhythmic growth explained by coincidence between internal and external cues. [http://www.nature.com/nature/journal/v448/n7151/abs/nature05946.html Nature 448, 358-361].


*Nozue, K., Maloof, J.N. (2006) Diurnal regulation of plant growth. [http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3040.2005.01489.x Plant Cell Environ 29, 396-408].
[[Farre_Lab:Publications | see complete list...]]


*Balasubramanian, S., Sureshkumar, S., Agrawal, M., Michael, T.P., Wessinger, C., Maloof, J.N., Clark, R., Warthmann, N., Chory, J., Weigel, D. (2006) The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of ''Arabidopsis thaliana''. [http://www.nature.com/ng/journal/v38/n6/abs/ng1818.html Nat Genet 38, 711-5].
|width=200px style="padding: 5px; background-color: #ffffff; border: 2px solid #F8B603;" |


*[[Maloof_Lab:Publications | see complete list...]]
[[Farre_Lab:Research |<h3><font style="color:#F8B603;">Announcements</font></h3>]]
 
* Andrew Lapinsky has been awarded the Bessey Award for Outstanding Senior in Plant Biology. Congratulations!
|width=200px style="padding: 5px; background-color: #ffffff; border: 2px solid #F8B603;" |
*[[Farre_Lab:Announcements | Group meeting, journal clubs, and seminars]]<br>


<h3><font style="color:#F8B603;">Announcements</font></h3>
*[[Media:201404330-Map-MPSB.jpg| Our Lab has moved to the new Plant Molecular Science Building]]
*[[Maloof_Lab:Group_meeting|Group meeting, journal clubs, and seminars]]
|-valign="top"
|-valign="top"
|style="padding: 5px; background-color: #ffffff; border: 2px solid red;" |
|style="padding: 5px; background-color: #ffffff; border: 2px solid red;" |
[[Farre_Lab:Links |<h3><font style="color:red">Links</font></h3>]]
*[[Farre Lab:NSF_T&R|Farre Lab NSF funded Research & Teaching program for pre-service teachers]]
*[[Farre_Lab:Links|MSU Links]]
*[[Farre_Lab:Links|Other Circadian Labs]]
*[http://plantgenomics.msu.edu Plant Genomics Undergraduate Program at MSU]
*[[Farre_Lab:Links|Tools]]
*[[Farre_Lab:Links|Other Interesting Links]]
*[[Farre_Lab:Links|Rhythm Movies]]
*[http://www.hulu.com/watch/16417/saturday-night-live-googly-eyes-gardener| Gardening Tips]
*http://www.openwetware.org http://openwetware.org/images/0/01/80x15_openwetware.png
<h3><font style="color:red">Funding</font></h3>
<h3><font style="color:red">Funding</font></h3>
*[http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5338&org=BIO NSF Plant Genome Research Program]
*NSF
**[[Maloof_Lab:PGRP | Molecular evolutionary genetics of crop and weed responses to
*MSU
crowding]]
*[http://www.hfsp.org/ Human Frontier Science Program]
|}
__NOTOC__
__NOTOC__

Revision as of 10:08, 16 May 2014


Home        Research        Publications        People        Links        Teaching        Contact       


Research

Our goal is to understand how circadian clocks work and why they play such a key role in growth and development. We study the regulation and role of circadian rhythms in plants and alga. Circadian rhythms are necessary for optimal growth and survival in several photosynthetic species, including Chlamydomonas rheinhardtii, Synechocystes sp. and Arabidopsis thaliana. Although circadian clocks share a basic architecture, they differ in their molecular components and appear to not to be conserved between different taxa.

We work on the model plant Arabidopsis thaliana and have recently started analyzing rhythms in the heterokont alga Nannochloropsis oceanica.

read more...

Lab Members


Publications

  • Braun R, Farré EM, Schurr U, Matsubara S (in press) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. Journal of Phycology [1]
  • Liu T, Carlsson J, Takeuchi T, Newton L (2013) Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal.Plant J 76(1):101-14PubMed
  • Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16(5):621-9PubMed
  • Vieler et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. Plos Genetics8(11):e1003064. Pubmed
  • Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15(3):293-300. PubMed
  • Farre EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14(3):401-10.PubMed
  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398-402.PubMed
  • Dong M, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108(17):7241-6.PubMed


see complete list...

Announcements

Links

Funding

  • NSF
  • MSU