Farre Lab:Publications: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Template:Farre}}
{{Template:Farre}}
== Circadian Clock ==
{| cellspacing="2px" cellpadding="0" border="0" style="padding: 0px; width: 700px; color: #000000; background-color: #ffffff;"
|-valign="top"
|width=750px style="padding: 5px; background-color: #ffffff; border: 2px solid #FF8C00;" |


Farre EM and Kay SA (2007) PRR7 Protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J 52 (3):548–560.
<h3><font style="color:#FF8C00;">Publications</font></h3>


Para A, Farre EM, Imaizumi T, Pruneda-Paz J, Harmon FG, Kay SA (2007). PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19:3462-3473.
<h2><font style="color:#000000;">Circadian Clock</font></h2>
*Horak E, Farré EM (in press)The regulation of UV-B responses by the circadian clock. Plant Signaling and Behavior.
*Takeuchi T, Newton L, Burkhardt A, Mason S, Farre EM (2014) Light and the circadian clock mediate time specific changes in sensitivity to UV-B stress under light/dark cycles. Journal of Experimental Botany 65(20):6003-12 [http://www.ncbi.nlm.nih.gov/pubmed/25147271 PubMed]
*Braun R, Farré EM, Schurr U, Matsubara S (2014) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. Journal of Phycology 50(1):515–525 [http://onlinelibrary.wiley.com/doi/10.1111/jpy.12177/abstract]
*Liu T, Carlsson J, Takeuchi T, Newton L (2013) Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal.Plant J 76(1):101-14 [http://www.ncbi.nlm.nih.gov/pubmed/23808423 PubMed]
*Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16(5):621-9 [http://www.ncbi.nlm.nih.gov/pubmed/23856081 PubMed]
*Vieler et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. Plos Genetics8(11):e1003064. [http://www.ncbi.nlm.nih.gov/pubmed?term=Plos%20Genetics%20Vieler%20Benning Pubmed]
*Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15(3):293-300. [http://www.ncbi.nlm.nih.gov/pubmed/22305520 PubMed]
*Farre EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14(3):401-10.[http://www.ncbi.nlm.nih.gov/pubmed/22284304 PubMed]
*Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011)The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398-402.
*Dong M, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108(17):7241-6.
*Farre EM and Kay SA (2007) PRR7 Protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J 52 (3):548–560.


*Zeilinger MN, *Farre EM, Taylor SR, Kay SA and Doyle FJ III (2006) A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2: 58.
*Para A, Farre EM, Imaizumi T, Pruneda-Paz J, Harmon FG, Kay SA (2007). PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19:3462-3473.
*Equal authorship; News and Views by Ueda HR (2006) Molecular Systems Biology 2.  


Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA(2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15(1):47-54.  
*^Zeilinger MN, ^Farre EM, Taylor SR, Kay SA and Doyle FJ III (2006) A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2: 58. ^Equal authorship; News and Views by Ueda HR (2006) Molecular Systems Biology 2.  


Metabolism:
*Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15(1):47-54.  
Farre EM, Fernie AR, Willmitzer L. (2008) Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism. Metabolomics 4:161-170.


Farre EM, Tech S, Trethewey RN, Fernie AR, Willmitzer L. (2006) Subcellular pyrophosphate metabolism in developing tubers of potato (Solanum tuberosum). Plant Mol Biol. 62(1-2):165-79.
==Metabolism==
*Farre EM, Fernie AR, Willmitzer L. (2008) Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism. Metabolomics 4:161-170.


Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y,  Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: A novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell (14) 2191-2213.
*Farre EM, Tech S, Trethewey RN, Fernie AR, Willmitzer L. (2006) Subcellular pyrophosphate metabolism in developing tubers of potato (Solanum tuberosum). Plant Mol Biol. 62(1-2):165-79.


Farre EMTiessen A,  Roessner U,  Geigenberger P,  Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiology 127: 685-700.
*Tiessen A,  Hendriks JHM,  Stitt MBranscheid A,  Gibon YFarre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: A novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell (14) 2191-2213.


Farre EM, Bachmann A, Willmitzer L, Trethewey R (2001) Sprouting of potato tubers is significantly accelerated by the expression of a bacterial pyrophosphatase. Nature Biotech 19(3):268-272.
*Farre EM,  Tiessen A,  Roessner U,  Geigenberger P,  Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiology 127: 685-700.
Farre EM, Geigenberger P, Willmitzer L and Trethewey RN (2000) A possible role for pyrophosphate in the coordination of cytososlic and plastididal carbon metabolism within the potato tuber. Plant Physiology 123: 681-688.
 
*Farre EM, Bachmann A, Willmitzer L, Trethewey R (2001) Sprouting of potato tubers is significantly accelerated by the expression of a bacterial pyrophosphatase. Nature Biotech 19(3):268-272.
 
*Farre EM, Geigenberger P, Willmitzer L and Trethewey RN (2000) A possible role for pyrophosphate in the coordination of cytososlic and plastididal carbon metabolism within the potato tuber. Plant Physiology 123: 681-688.

Revision as of 08:19, 6 January 2015


Home        Research        Publications        People        Links        Teaching        Contact       


Publications

Circadian Clock

  • Horak E, Farré EM (in press)The regulation of UV-B responses by the circadian clock. Plant Signaling and Behavior.
  • Takeuchi T, Newton L, Burkhardt A, Mason S, Farre EM (2014) Light and the circadian clock mediate time specific changes in sensitivity to UV-B stress under light/dark cycles. Journal of Experimental Botany 65(20):6003-12 PubMed
  • Braun R, Farré EM, Schurr U, Matsubara S (2014) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. Journal of Phycology 50(1):515–525 [1]
  • Liu T, Carlsson J, Takeuchi T, Newton L (2013) Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal.Plant J 76(1):101-14 PubMed
  • Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16(5):621-9 PubMed
  • Vieler et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. Plos Genetics8(11):e1003064. Pubmed
  • Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15(3):293-300. PubMed
  • Farre EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14(3):401-10.PubMed
  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011)The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398-402.
  • Dong M, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108(17):7241-6.
  • Farre EM and Kay SA (2007) PRR7 Protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J 52 (3):548–560.
  • Para A, Farre EM, Imaizumi T, Pruneda-Paz J, Harmon FG, Kay SA (2007). PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19:3462-3473.
  • ^Zeilinger MN, ^Farre EM, Taylor SR, Kay SA and Doyle FJ III (2006) A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2: 58. ^Equal authorship; News and Views by Ueda HR (2006) Molecular Systems Biology 2.
  • Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15(1):47-54.

Metabolism

  • Farre EM, Fernie AR, Willmitzer L. (2008) Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism. Metabolomics 4:161-170.
  • Farre EM, Tech S, Trethewey RN, Fernie AR, Willmitzer L. (2006) Subcellular pyrophosphate metabolism in developing tubers of potato (Solanum tuberosum). Plant Mol Biol. 62(1-2):165-79.
  • Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: A novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell (14) 2191-2213.
  • Farre EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiology 127: 685-700.
  • Farre EM, Bachmann A, Willmitzer L, Trethewey R (2001) Sprouting of potato tubers is significantly accelerated by the expression of a bacterial pyrophosphatase. Nature Biotech 19(3):268-272.
  • Farre EM, Geigenberger P, Willmitzer L and Trethewey RN (2000) A possible role for pyrophosphate in the coordination of cytososlic and plastididal carbon metabolism within the potato tuber. Plant Physiology 123: 681-688.