Forster Lab: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
m (updated lab members)
 
(246 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Synthetic biology top}}
<div style="padding: 10px; color: #000000; background-color: #ccccff; width:730px" >
<div style="padding: 10px; color: #000000; background-color: #ccccff; width:730px" >
[[Image:Tony Forster003.jpg|450px|right|Minimal Cell Project]]
[[Image:Tony Forster003.jpg|400px|right|Minimal Cell Project]]
SynBio links above<br><br>
== The Boss!? ==
== The Boss!? ==


Professor Anthony C. Forster, M.D., Ph.D.<br>
Professor Anthony C. Forster, M.D., Ph.D.<br>
University Chair in Chemical Biology<br>
Program in Molecular Biology<br>
Program in Structural and Molecular Biology<br>
Department of Cell and Molecular Biology<br>
Department of Cell and Molecular Biology<br>
Uppsala University<br><br>
Uppsala University<br>
<br>
office and mailing address:<br>
office and mailing address:<br>
ICM Dept., Room D9:216b<br>
ICM Dept., Room D9:216b<br>
Husargatan 3, Box 596<br>
Husargatan 3, Box 596<br>
75124 Uppsala, Sweden<br><br>
75124 Uppsala, Sweden<br>
phone: +46-18-471 4618<br>
<br>
e-mail: a.forster@icm.uu.se<br>
office and cell phone: +46-18-471 4618<br>
e-mail: a.forster(at)icm.uu.se<br>
lab web: http://openwetware.org/wiki/Forster_Lab<br>
lab web: http://openwetware.org/wiki/Forster_Lab<br>
Department web: http://www.icm.uu.se/<br>
Department web: http://www.icm.uu.se/<br>
Uppsala University web: http://www.uu.se/en/<br><br>
Uppsala University web: http://www.uu.se/en/<br>
-------------------------------------------------------------------------------------------------------------
<font color="green">'''Group Members:'''</font><br>
Anthony C. Forster, M.D., Ph.D. (principal investigator)<br>
Raymond Fowler (laboratory technician)<br>
Marek Kwiatkowski, Ph.D. (senior researcher)<br>
Josefine Liljeruhm (doctoral student)<br>
Sofia Ny (project student)<br>
Tyson R. Shepherd, Ph.D. (Wenner-Gren postdoctoral fellow)<br>
Andreas Svahn (project student)<br>
Jinfan Wang (doctoral student)<br>
<br>
<br>
phones in lab: +46-18-471 4387, 4651 and 4204<br>
'''Biography:'''<br>
<br>
Anthony C. Forster (Ph.D. Biochem., U. Adelaide; M.D., Harvard U.) researches RNA, protein synthesis and applications thereof (synthetic biology). He discovered the hammerhead catalytic RNA structure, invented external guide sequences for ribonuclease P, and created unnatural genetic codes de novo, all of which founded biotech companies. He has published in journals including Cell, Nature and Science, edited volumes of Methods and Biotechnology J., and coauthored "Synthetic Biology: A Lab Manual."
<font color="green">'''iGEM 2011 Uppsala University Team Members:'''</font><br>
http://2011.igem.org/Team:Uppsala-Sweden/Team<br>
Congratulations on qualifying at the European competition in Amsterdam for the world championships at MIT!<br>
<br>
<font color="green">'''iGEM 2012 Uppsala University Team Members:'''</font><br>
http://2012.igem.org/Team:Uppsala_University<br>
Congratulations on the top score for a Scandinavian team!<br><br>
-------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
'''Postdoctoral Position:'''<br>
<font color="red">'''Research Description:'''</font><br>
Minimal qualifications include expertise in molecular biology and 2 first-authored research papers in international peer-reviewed journals. Experience with translation or RNA is a plus. Please mail a letter of interest, C.V. and names/e-mail addresses/phone #'s of 3 references.  
'''Synthetic biology and protein synthesis'''<br>
SynBio is a creative new field defined as the complex engineering of replicating systems. It encompasses next-generation technology for bioengineering and fresh approaches to global challenges such as drug discovery and biofuels.<br>
Our current projects include:<br>
1. Improving ribosomal incorporation of unnatural amino acids for investigating translation mechanism and for applications such as directed evolution of peptidomimetic drugs.<br>
2. Development of chromoproteins as reporters and for biosensor diagnostics.<br>
3. Understanding and improving transcription termination.<br>
4. Improving vaccines via synthetic biology.<br>
5. Determining functions of ribosomal RNA modifications towards synthesis of the ribosome and self-replication.
-------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
'''Research Keywords:'''<br>
'''Research Keywords:'''<br>
Synthetic biology, protein synthesis, drug discovery, directed evolution, translation, unnatural amino acid, ribosome, RNA, mRNA, tRNA, codon bias, E. coli, bacteria, microbiology, biochemistry, modification enzyme, transcription termination, Tony Forster, Anthony Forster, A. C. Forster
Synthetic biology, protein synthesis, drug discovery, transcription termination, chromoprotein, fluorescent protein, unnatural amino acid, directed evolution, translation, ribosome, RNA, modification enzyme, E. coli, bacteria, microbiology, biochemistry, vaccine, Tony Forster
-------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
'''[[Research Description:]]'''<br>
<font color="green">'''Meet our lab group:'''</font>
'''SYNTHETIC BIOLOGY, PROTEIN SYNTHESIS AND DRUG DISCOVERY:'''<br>
[[Image:20230918_Forster_lab_members.png|400px|left|Minimal Cell Project]]
Synthetic biology is a new field that may be defined as the complex engineering of replicating systems ( http://syntheticbiology.org/ ). Protein synthesis is central to this field and also to antibiotic development. Important questions remain unanswered. For example,<br>
phones in lab:<br>
1. What are the mechanisms of substrate recognition and peptide bond formation?<br>
+46-18-471 4387, 471 4651 and 471 4204<br>
2. Can cell-free protein production be improved to rival inherently less-flexible in vivo systems?<br>
3. What genes are required to completely reconstitute translation (the "translatome")?<br>
4. What are the functions of ribosomal RNA modifications?<br>
5. Can new protein synthesis inhibitors be developed to combat rising bacterial resistance?<br>
Ironically, in addition to being a target for antibiotic development, we envisioned that the translation apparatus could also be engineered to generate drug leads against translation or any other target molecules.
-------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
'''WHERE WE ARE:'''<br>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
We've reconstituted a simplified, purified translation system that has enabled:<br>
'''Teaching:'''<br>
1. Modular alteration of aminoacyl-tRNA substrates using chemical synthesis to reveal key elements for substrate function in translation,<br>
1MB433: Synthetic Biology (10 hp, weeks 4-9)<br>
2. Overturning of dogma on the rate-limiting step in translation,<br>
http://www.uu.se/en/education/master/selma/kursplan/?kpid=24757&type=1<br>
3. Explaining why the genetic code evolved to contain proline,<br>
1BG044: Frontiers in Bioscience (10 hp, weeks 37-51)<br>
4. Creation of rudimentary genetic codes de novo, and<br>
https://www.uu.se/en/admissions/master/selma/kursplan/?kpid=39610&type=1<br>
5. Genetic screening of a model library of polypeptides in a purified system, termed "pure translation display."<br>
1MB205 and 1MB405 Project in laboratory synthetic biology I and II (Uppsala iGEM) courses, co-director<br>
6. Proposed a list of genes essential for reconstitution of translation (a "minimal translatome") and have begun synthesizing and testing the genes using "BioBricks", revealing unexpected properties of transcription terminators.
<font color="green">'''iGEM 2020 Uppsala University Team Members:'''</font><br>
https://2020.igem.org/Team:UofUppsala/Team<br>
Congratulations on winning "Best new application" prize!<br>
<font color="green">'''iGEM 2014 Ravenwood High School Team Members:'''</font><br>
http://2014hs.igem.org/Team:Ravenwood_Raptors<br>
Congratulations on being the first iGEM team from Tennessee!
[[Image:Final_covers.jpg|730px|left]]<br>
http://www.worldscientific.com/worldscibooks/10.1142/9061#t=aboutBook<br>
[[Image:Group_6_Lena's_photo.jpg|730px|left]]<br>
-------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
'''WHERE WE'RE GOING:'''<br>
'''Postdoctoral Applicants:'''<br>
We aim to exploit our purified translation system to:<br>
Minimal qualifications include expertise in molecular biology and 2 first-authored research papers in international peer-reviewed journals. Experience with bacterial translation or RNA is a plus. Please mail a letter of interest and C.V.
1. Determine the rules of substrate recognition by the translation apparatus,<br>
2. Enable ligand discovery using pure translation display of peptides containing multiple, protease-resistant, unnatural amino acids,<br>
3. Synthesize active 23 rRNA in vitro using rRNA modification enzymes associated with antibiotic resistance,<br>
4. Optimize in vitro translation systems,<br>
5. Determine the genes necessary for reconstitution of translation, and<br>
6. Synthesize a life-like replicating system (a minimal cell project) dependent only on small molecules for food.
-------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
'''EDUCATION:'''<br>
'''Master and PhD Applicants:'''<br>
B.Sc.Hons., University of Adelaide, Australia<br>
Students enrolled in a Master program (including EU students seeking an Erasmus exchange) are welcome to apply for a few months' work experience in the lab. Most students achieve authorship on a publication, and extension into a PhD position is possible. Research experience is a plus. Please mail a letter of interest and C.V.
Ph.D., Biochemistry, University of Adelaide, Australia (discovered hammerhead ribozyme structure).<br>
M.D., Harvard University.<br>
Residency, Anatomical Pathology, Brigham and Women's Hospital, Boston.
-------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
'''PATENTS:'''<br>
'''PATENTS:'''<br>
Forster, A C, Blacklow, S C. Process and compositions for peptide, protein and peptidomimetic synthesis. US6977150<br>
Forster, A C, Blacklow, S C. Process and compositions for peptide, protein and peptidomimetic synthesis. US6977150<br>
  (founding I.P. for Ra Pharmaceuticals, Inc., Boston).<br>
(founding I.P. for Ra Pharmaceuticals, Inc., Boston, now merged with UCB).<br>
Altman, S, Forster, A C, Guerrier-Takada, C L. Cleavage of targeted RNA by RNAase P. US5168053<br>
Altman, S, Forster, A C, Guerrier-Takada, C L. Cleavage of targeted RNA by RNAase P. US5168053<br>
  (founding I.P. for Innovir Laboratories, Inc., NY).<br>
(founding I.P. for Innovir Laboratories, Inc., NY).<br>
-------------------------------------------------------------------------------------------------------------  
-------------------------------------------------------------------------------------------------------------  
'''PUBLICATIONS:'''<br>
'''PUBLICATIONS:'''<br>
Almost all pubs indexed by and available from PubMed<br>
Almost all pubs indexed by and available from PubMed:<br>
http://www.ncbi.nlm.nih.gov/pubmed/ (type "Forster AC")
http://www.ncbi.nlm.nih.gov/pubmed/ (type "Forster AC")<br>
Citations per paper are available from Google Scholar:<br>
http://scholar.google.com/ (type "Forster AC")<br>
<br>
Bao, L, Karpenko, V V, Forster, A C. Rate-limiting hydrolysis in ribosomal release reactions revealed by ester activation. J. Biol. Chem., 298, 102509, 1-9, 2022<br>
Open access: https://doi.org/10.1016/j.jbc.2022.102509<br>
 
Forster, A C. Tales of the unexpected in Sidney Altman's laboratory. RNA, 28, 1406-1408, 2022<br>
Open access: doi: 10.1261/rna.079397.122<br>
https://rnajournal.cshlp.org/content/early/2022/09/16/rna.079397.122.short<br>
 
Liljeruhm, J, Leppik, M, Bao, L, Truu, T, Calvo-Noriega, M, Freyer, N S, Liiv, A, Wang, J, Crespo Blanco, R, Ero,
 R, Remme, J, Forster, A C. Plasticity and conditional essentiality of modification enzymes for domain V of Escherichia coli 23S ribosomal RNA. RNA, 28, 796-807, 2022<br>
doi: 10.1261/rna.079096.121<br>
 
Forster, A C. Revisiting the extinction of the RNA world. Biochemistry, 61, 749-751, 2022<br>
Open access https://doi.org/10.1021/acs.biochem.2c00121<br>
 
Doerr, A, Foschepoth, D, Forster, A C, Danelon, C. In vitro synthesis of 32 translation-factor proteins from a single template reveals impaired ribosomal processivity. Sci. Rep. 11:1898, 1-12, 2021<br>
Open access https://doi.org/10.1038/s41598-020-80827-8<br>
 
Bao, L, Menon, P N K, Liljeruhm, J, Forster, A C. Overcoming chromoprotein limitations by engineering a red fluorescent protein. Anal. Biochem. 611:113936, 1-8, 2020<br>
Open access https://doi.org/10.1016/j.ab.2020.113936<br>


Ieong, K-W, Pavlov, MY, Kwiatkowski, M, Ehrenberg, M. and Forster, AC, Manuscript on improving incorporation of unnatural L-aminoacyl-tRNAs in translation.
Vogel, C, Gynnå, A, Yuan, J, Bao, L, Liljeruhm, J, Forster, A C. Rationally-designed Spot 42 RNAs with an inhibition/toxicity profile advantageous for engineering E. coli. Engineering Rep., 2:3, e12126, 1-10, 2020<br>
Our front cover and open access: https://doi.org/10.1002/eng2.12126<br>


Ieong, K-W, Pavlov, MY, Kwiatkowski, M, Forster, AC(corresponding author) and Ehrenberg, M., Inefficient delivery but fast peptide bond formation of unnatural L-aminoacyl-tRNAs in translation, J Am Chem Soc, published online.
Liljeruhm, J, Wang, J, Kwiatkowski, M, Sabari, S, Forster, A C. Kinetics of D-amino acid incorporation in translation.  ACS Chem. Biol. 14:204-213, 2019<br>
Open access: https://doi.org/10.1021/acschembio.8b00952<br>


Punekar, A, Shepherd, TR, Liljeruhm, J, Forster, AC and Selmer, M., Crystal structure of RlmM, the 2'O-ribose methyltransferase for C2498 of E. coli 23S rRNA, Nucleic Acids Res, 40, 10507-10520, 2012.
Wang, J, Forster, A C. Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies. Curr. Opin. Chem. Biol. 46:180-187, 2018<br>
Open access: https://doi.org/10.1016/j.cbpa.2018.07.009<br>


Forster, AC. Synthetic biology challenges long-held hypotheses in translation, codon bias and transcription. Biotech J, 7, 835-845, 2012.
Liljeruhm, J, Funk, S K, Tietscher, S, Edlund, A D, Jamal, S, Wistrand-Yuen, P, Dyrhage, K, Gynnå, A, Ivermark, K, Lövgren, J, Törnblom, V, Virtanen, A, Lundin, E R, Wistrand-Yuen, E, Forster, A C. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. J. Biol. Eng. 12:8, 1-10, 2018<br>
https://doi.org/10.1186/s13036-018-0100-0<br>


Forster, AC and Lee, SY. Editorial: NextGen SynBio has arrived... Biotech J, 7, 827, 2012.
Shepherd, T R, Du, L, Liljeruhm, J, Samudyata, Wang, J, Sjödin, M O D, Wetterhall, M, Yomo, T, Forster, A C. De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res. 45, 10895-10905, 2017


Du, L, Villarreal, S, Forster, AC. Multigene expression in vivo: supremacy of large versus small terminators for T7 RNA polymerase. Biotechnol Bioeng, 109, 1043-1050, 2012.
Wang, J, Forster, A C. Translational roles of the C75 2'OH in an in vitro tRNA transcript at the ribosomal A, P and E sites. Sci. Rep. 7, 6709, 1-8, 2017


Wang, HH, Huang P-Y, Xu G, Haas W, Marblestone A, Li J, Gygi SP, Forster AC, Jewett MC, Church GM. Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synthetic Biology, 1, 43-52, 2012
Wang, J, Kwiatkowski, M, Forster, A C. Ribosomal peptide syntheses from activated substrates reveal rate limitation by an unexpected step at the peptidyl site. J. Am. Chem. Soc. 138, 15587-15595, 2016


Watts, RE, Forster AC. Update on pure translation display with unnatural amino acid incorporation. Methods in Molecular Biology, 805, 349-365, 2012
Wang, J, Kwiatkowski, M, Forster, A C. Kinetics of tRNAPyl-mediated amber suppression in E. coli translation reveals unexpected limiting steps and competing reactions. Biotechnol. Bioeng. 113, 1552-1559, 2016


Gao, R, Forster, AC. Changeability of individual domains of an aminoacyl-tRNA in polymerization by the ribosome. FEBS Lett, 584(1), 99-105, 2010
Wang, J, Kwiatkowski, M, Forster, A C. Kinetics of ribosome-catalyzed polymerization using artificial aminoacyl-tRNA substrates clarifies inefficiencies and improvements. ACS Chem. Biol. 10, 2187-2192, 2015


Jewett, MC, Forster, AC. Update on designing and building minimal cells. Current Opinion in Biotechnology, 21, 697-703, 2010
Kwiatkowski, M, Wang, J, Forster, A C. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjugate Chem. 25, 2086-2091, 2014


Watts, RE, Forster, AC. Chemical models of peptide formation in translation. Biochemistry, 49, 2177-2185, 2010
Liljeruhm, J, Gullberg, E, Forster A C. Synthetic biology: A lab manual. World Scientific Press, 204 pp, 2014<br>
http://www.worldscientific.com/worldscibooks/10.1142/9061#t=aboutBook<br>


Du, L, Gao, R, Forster, AC. Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnol Bioeng, 104, 1189-1196, 2009
Wang, J, Kwiatkowski, M, Pavlov, M Y, Ehrenberg, M, Forster, A C. Peptide formation by N-methyl amino acids in translation is hastened by higher pH and tRNAPro. ACS Chem. Biol. 9, 1303-1311 and front cover, 2014


Forster, AC. Low modularity of aminoacyl-tRNA substrates in polymerization by the ribosome. Nucleic Acids Res, 37, 3747-3755, 2009 PMCID:2699524
Ieong, K-W, Pavlov, M Y, Kwiatkowski, M, Ehrenberg, M, Forster, A C. A tRNA body with high affinity for EF-Tu hastens ribosomal incorporation of unnatural amino acids. RNA 20, 632-643, 2014


Pavlov, MY, Watts, RE, Tan, Z, Cornish, VW, Ehrenberg, M, Forster, AC. Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci U S A, 106(1), 50-4, 2009 PMCID:2629218
Punekar, A, Liljeruhm, J, Shepherd, T R, Forster, A C, Selmer, M. Structural and functional insights into the molecular mechanism of rRNA m6A methyltransferase RlmJ. Nucleic Acids Res. 41, 9537-9548, 2013
Quax, T E F, Wolf, Y I, Koehorst, J J, Wurtzel, O, van der Oost, R, Ran, W, Blombach, F, Makarova, K S, Brouns, S J J, Forster, A C, Wagner, E G H, Sorek, R, Koonin, E V, van der Oost, J. Differential translation tunes uneven production of operon-encoded proteins. Cell Rep. 4, 938-944, 2013


Forster, A C, Church, G M. Synthetic biology projects in vitro. Genome Res, 17(1), 1-6, 2007
Ieong, K-W, Pavlov, M Y, Kwiatkowski, M, Forster, A C, Ehrenberg, M. Inefficient delivery but fast peptide bond formation of unnatural L-aminoacyl-tRNAs in translation, J. Am. Chem. Soc. 134, 17955-17962, 2012


Zhang, B, Tan, Z, Gartenmann Dickson, L, Nalam, M N L, Cornish, V W, Forster, A C. Specificity of Translation for N-Alkyl Amino Acids. J Am Chem Soc, 129(37), 11316-11317, 2007 PMCID:2275119
Punekar, A, Shepherd, T R, Liljeruhm, J, Forster, A C, Selmer, M. Crystal structure of RlmM, the 2'O-ribose methyltransferase for C2498 of E. coli 23S rRNA. Nucleic Acids Res., 40, 10507-10520, 2012


Forster, A C, Church, G M. Towards synthesis of a minimal cell. Mol Syst Biol, 2(45), 1-10, 2006 PMCID:1681520
Forster, A C. Synthetic biology challenges long-held hypotheses in translation, codon bias and transcription. Biotech. J., 7, 835-845, 2012
 
Forster, A C, Lee, S Y. Editorial: NextGen SynBio has arrived... Biotech. J., 7, 827, 2012
 
Du, L, Villarreal, S, Forster, A C. Multigene expression in vivo: supremacy of large versus small terminators for T7 RNA polymerase. Biotechnol. Bioeng., 109, 1043-1050, 2012
 
Wang, H H, Huang, P-Y, Xu, G, Haas, W, Marblestone, A, Li, J, Gygi, S P, Forster, A C, Jewett, M C, Church, G M. Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth. Biol., 1, 43-52, 2012
 
Watts, R E, Forster, A C. Update on pure translation display with unnatural amino acid incorporation. Meth. Mol. Biol., 805, 349-365, 2012
 
Gao, R, Forster, A C. Changeability of individual domains of an aminoacyl-tRNA in polymerization by the ribosome. FEBS Lett., 584(1), 99-105, 2010
 
Jewett, M C, Forster, A C. Update on designing and building minimal cells. Curr. Opin. Biotech., 21, 697-703, 2010
 
Watts, R E, Forster, A C. Chemical models of peptide formation in translation. Biochem., 49, 2177-2185, 2010
 
Du, L, Gao, R, Forster, A C. Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnol. Bioeng., 104, 1189-1196, 2009
 
Forster, A C. Low modularity of aminoacyl-tRNA substrates in polymerization by the ribosome. Nucleic Acids Res., 37, 3747-3755, 2009
 
Pavlov, M Y, Watts, R E, Tan, Z, Cornish, V W, Ehrenberg, M, Forster, A C. Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc. Natl. Acad. Sci. USA, 106(1), 50-4, 2009
 
Forster, A C, Church, G M. Synthetic biology projects in vitro. Genome Res., 17(1), 1-6 and front cover, 2007
 
Zhang, B, Tan, Z, Gartenmann Dickson, L, Nalam, M N L, Cornish, V W, Forster, A C. Specificity of Translation for N-Alkyl Amino Acids. J. Am. Chem. Soc., 129(37), 11316-11317, 2007
 
Forster, A C, Church, G M. Towards synthesis of a minimal cell. Mol. Syst. Biol., 2(45), 1-10, 2006


Forster, A C. Engineering translation: A nano-review. Methods, 36(3), 225-6, 2005
Forster, A C. Engineering translation: A nano-review. Methods, 36(3), 225-6, 2005
Line 128: Line 165:
Tan, Z, Blacklow, S C, Cornish, V W, Forster, A C. De novo genetic codes and pure translation display. Methods, 36(3), 279-90, 2005
Tan, Z, Blacklow, S C, Cornish, V W, Forster, A C. De novo genetic codes and pure translation display. Methods, 36(3), 279-90, 2005


Forster, A C, Cornish, V W, Blacklow, S C. Pure translation display. Anal Biochem, 333(2), 358-64, 2004
Forster, A C, Cornish, V W, Blacklow, S C. Pure translation display. Anal. Biochem., 333(2), 358-64, 2004


Tan, Z, Forster, A C, Blacklow, S C, Cornish, V W. Amino acid backbone specificity of the Escherichia coli translation machinery. J Am Chem Soc, 126(40), 12752-3, 2004
Tan, Z, Forster, A C, Blacklow, S C, Cornish, V W. Amino acid backbone specificity of the Escherichia coli translation machinery. J. Am. Chem. Soc., 126(40), 12752-3, 2004


Forster, A C, Tan, Z, Nalam, M N L, Lin, H, Qu, H, Cornish, V W, Blacklow, S C. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc Natl Acad Sci U S A, 100(11), 6353-7, 2003 PMCID:164450
Forster, A C, Tan, Z, Nalam, M N L, Lin, H, Qu, H, Cornish, V W, Blacklow, S C. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc. Natl. Acad. Sci. USA, 100(11), 6353-7, 2003


Forster, A C, Weissbach, H, Blacklow, S C. A simplified reconstitution of mRNA-directed peptide synthesis: activity of the epsilon enhancer and an unnatural amino acid. Anal Biochem, 297(1), 60-70, 2001
Forster, A C, Weissbach, H, Blacklow, S C. A simplified reconstitution of mRNA-directed peptide synthesis: activity of the epsilon enhancer and an unnatural amino acid. Anal. Biochem., 297(1), 60-70, 2001


Li, E, Beard, C, Forster, A C, Bestor, T H, Jaenisch, R. DNA methylation, genomic imprinting, and mammalian development. Cold Spring Harb Symp Quant Biol, 58, 297-305, 1993
Li, E, Beard, C, Forster, A C, Bestor, T H, Jaenisch, R. DNA methylation, genomic imprinting, and mammalian development. Cold Spring Harb. Symp. Quant. Biol., 58, 297-305, 1993


Forster, A C, Altman, S. External guide sequences for an RNA enzyme. Science, 249(4970), 783-6, 1990
Forster, A C, Altman, S. External guide sequences for an RNA enzyme. Science, 249(4970), 783-6, 1990
Line 142: Line 179:
Forster, A C, Altman, S. Similar cage-shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell, 62(3), 407-9, 1990
Forster, A C, Altman, S. Similar cage-shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell, 62(3), 407-9, 1990


Forster, A C, Davies, C, Hutchins, C J, Symons, R H. Characterization of self-cleavage of viroid and virusoid RNAs. Methods Enzymol, 181, 583-607, 1990
Forster, A C, Davies, C, Hutchins, C J, Symons, R H. Characterization of self-cleavage of viroid and virusoid RNAs. Meth. Enzymol., 181, 583-607, 1990


McInnes, J L, Forster, A C, Skingle, D C, Symons, R H. Preparation and uses of photobiotin. Methods Enzymol, 184, 588-600, 1990
McInnes, J L, Forster, A C, Skingle, D C, Symons, R H. Preparation and uses of photobiotin. Meth. Enzymol., 184, 588-600, 1990


Forster, A C, Davies, C, Sheldon, C C, Jeffries, A C, Symons, R H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature, 334(6179), 265-7, 1988
Forster, A C, Davies, C, Sheldon, C C, Jeffries, A C, Symons, R H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature, 334(6179), 265-7, 1988


McInnes, J L, Forster, A C, Symons, R H. Photobiotin-labelled DNA and RNA hybridization probes. Methods in Molecular Biology, 4, 401-414, 1988
McInnes, J L, Forster, A C, Symons, R H. Photobiotin-labelled DNA and RNA hybridization probes. Meth. Mol. Biol., 4, 401-414, 1988
 
Forster, A C, Jeffries, A C, Sheldon, C C, Symons, R H. Structural and ionic requirements for self-cleavage of virusoid RNAs and trans self-cleavage of viroid RNA. Cold Spring Harb. Symp. Quant. Biol., 52, 249-59, 1987


Forster, A C, Jeffries, A C, Sheldon, C C, Symons, R H. Structural and ionic requirements for self-cleavage of virusoid RNAs and trans self-cleavage of viroid RNA. Cold Spring Harb Symp Quant Biol, 52, 249-59, 1987
Forster, A C, Symons, R H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell, 50(1), 9-16, 1987


Forster, A C, Symons, R H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell, 49(2), 211-20, 1987
Forster, A C, Symons, R H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell, 49(2), 211-20, 1987


Forster, A C, Symons, R H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell, 50(1), 9-16, 1987
Symons, R H, Hutchins, C J, Forster, A C, Rathjen, P D, Keese, P, Visvader, J E. Self-cleavage of RNA in the replication of viroids and virusoids. J. Cell Sci. Suppl., 7, 303-18, 1987
 
Symons, R H, Hutchins, C J, Forster, A C, Rathjen, P D, Keese, P, Visvader, J E. Self-cleavage of RNA in the replication of viroids and virusoids. J Cell Sci Suppl, 7, 303-18, 1987


Hutchins, C J, Rathjen, P D, Forster, A C, Symons, R H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res, 14(9), 3627-40, 1986 PMCID:339804
Hutchins, C J, Rathjen, P D, Forster, A C, Symons, R H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res., 14(9), 3627-40, 1986


Forster, A C, McInnes, J L, Skingle, D C, Symons, R H. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res, 13(3), 745-61, 1985 PMCID:341032
Forster, A C, McInnes, J L, Skingle, D C, Symons, R H. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res., 13(3), 745-61, 1985


Visvader, J E, Forster, A C, Symons, R H. Infectivity and in vitro mutagenesis of monomeric cDNA clones of citrus exocortis viroid indicates the site of processing of viroid precursors. Nucleic Acids Res, 13(16), 5843-56, 1985 PMCID:321916
Visvader, J E, Forster, A C, Symons, R H. Infectivity and in vitro mutagenesis of monomeric cDNA clones of citrus exocortis viroid indicates the site of processing of viroid precursors. Nucleic Acids Res., 13(16), 5843-56, 1985


== Lab pics ==
== Lab pics ==
[[Image:2020_Strängnäs.png|730px|left]]
<br><br>
[[Image:20200421_Forster_lab_meeting_by_Zoom.png|730px|left]]
<br><br>
[[Image:20191025_Halloween_party2.png|730px|left]]
<br><br>
[[Image:20140517_Forster_lab.JPG|730px|left]]
<br><br>
[[Image:2013_DNA_model.png|730px|left]]
<br><br>
[[Image:Lab_group_activities.jpg|730px|left]]
[[Image:Lab_group_activities.jpg|730px|left]]
<br><br>
[[Image:Forster_lab_members_2011.jpg|730px|left]]
[[Image:Forster_lab_members_2011.jpg|730px|left]]
<br><br>
[[Image:Forster lab warming, 2005.jpg|730px|left]]
[[Image:Forster lab warming, 2005.jpg|730px|left]]
<br><br>
UAG
UAG

Latest revision as of 07:27, 18 September 2023

Minimal Cell Project
Minimal Cell Project

The Boss!?

Professor Anthony C. Forster, M.D., Ph.D.
Program in Molecular Biology
Department of Cell and Molecular Biology
Uppsala University

office and mailing address:
ICM Dept., Room D9:216b
Husargatan 3, Box 596
75124 Uppsala, Sweden

office and cell phone: +46-18-471 4618
e-mail: a.forster(at)icm.uu.se
lab web: http://openwetware.org/wiki/Forster_Lab
Department web: http://www.icm.uu.se/
Uppsala University web: http://www.uu.se/en/

Biography:
Anthony C. Forster (Ph.D. Biochem., U. Adelaide; M.D., Harvard U.) researches RNA, protein synthesis and applications thereof (synthetic biology). He discovered the hammerhead catalytic RNA structure, invented external guide sequences for ribonuclease P, and created unnatural genetic codes de novo, all of which founded biotech companies. He has published in journals including Cell, Nature and Science, edited volumes of Methods and Biotechnology J., and coauthored "Synthetic Biology: A Lab Manual."


Research Description:
Synthetic biology and protein synthesis
SynBio is a creative new field defined as the complex engineering of replicating systems. It encompasses next-generation technology for bioengineering and fresh approaches to global challenges such as drug discovery and biofuels.
Our current projects include:
1. Improving ribosomal incorporation of unnatural amino acids for investigating translation mechanism and for applications such as directed evolution of peptidomimetic drugs.
2. Development of chromoproteins as reporters and for biosensor diagnostics.
3. Understanding and improving transcription termination.
4. Improving vaccines via synthetic biology.
5. Determining functions of ribosomal RNA modifications towards synthesis of the ribosome and self-replication.


Research Keywords:
Synthetic biology, protein synthesis, drug discovery, transcription termination, chromoprotein, fluorescent protein, unnatural amino acid, directed evolution, translation, ribosome, RNA, modification enzyme, E. coli, bacteria, microbiology, biochemistry, vaccine, Tony Forster


Meet our lab group:

Minimal Cell Project
Minimal Cell Project

phones in lab:
+46-18-471 4387, 471 4651 and 471 4204




























Teaching:
1MB433: Synthetic Biology (10 hp, weeks 4-9)
http://www.uu.se/en/education/master/selma/kursplan/?kpid=24757&type=1
1BG044: Frontiers in Bioscience (10 hp, weeks 37-51)
https://www.uu.se/en/admissions/master/selma/kursplan/?kpid=39610&type=1
1MB205 and 1MB405 Project in laboratory synthetic biology I and II (Uppsala iGEM) courses, co-director
iGEM 2020 Uppsala University Team Members:
https://2020.igem.org/Team:UofUppsala/Team
Congratulations on winning "Best new application" prize!
iGEM 2014 Ravenwood High School Team Members:
http://2014hs.igem.org/Team:Ravenwood_Raptors
Congratulations on being the first iGEM team from Tennessee!


http://www.worldscientific.com/worldscibooks/10.1142/9061#t=aboutBook



Postdoctoral Applicants:
Minimal qualifications include expertise in molecular biology and 2 first-authored research papers in international peer-reviewed journals. Experience with bacterial translation or RNA is a plus. Please mail a letter of interest and C.V.


Master and PhD Applicants:
Students enrolled in a Master program (including EU students seeking an Erasmus exchange) are welcome to apply for a few months' work experience in the lab. Most students achieve authorship on a publication, and extension into a PhD position is possible. Research experience is a plus. Please mail a letter of interest and C.V.


PATENTS:
Forster, A C, Blacklow, S C. Process and compositions for peptide, protein and peptidomimetic synthesis. US6977150
(founding I.P. for Ra Pharmaceuticals, Inc., Boston, now merged with UCB).
Altman, S, Forster, A C, Guerrier-Takada, C L. Cleavage of targeted RNA by RNAase P. US5168053
(founding I.P. for Innovir Laboratories, Inc., NY).


PUBLICATIONS:
Almost all pubs indexed by and available from PubMed:
http://www.ncbi.nlm.nih.gov/pubmed/ (type "Forster AC")
Citations per paper are available from Google Scholar:
http://scholar.google.com/ (type "Forster AC")

Bao, L, Karpenko, V V, Forster, A C. Rate-limiting hydrolysis in ribosomal release reactions revealed by ester activation. J. Biol. Chem., 298, 102509, 1-9, 2022
Open access: https://doi.org/10.1016/j.jbc.2022.102509

Forster, A C. Tales of the unexpected in Sidney Altman's laboratory. RNA, 28, 1406-1408, 2022
Open access: doi: 10.1261/rna.079397.122
https://rnajournal.cshlp.org/content/early/2022/09/16/rna.079397.122.short

Liljeruhm, J, Leppik, M, Bao, L, Truu, T, Calvo-Noriega, M, Freyer, N S, Liiv, A, Wang, J, Crespo Blanco, R, Ero,
 R, Remme, J, Forster, A C. Plasticity and conditional essentiality of modification enzymes for domain V of Escherichia coli 23S ribosomal RNA. RNA, 28, 796-807, 2022
doi: 10.1261/rna.079096.121

Forster, A C. Revisiting the extinction of the RNA world. Biochemistry, 61, 749-751, 2022
Open access https://doi.org/10.1021/acs.biochem.2c00121

Doerr, A, Foschepoth, D, Forster, A C, Danelon, C. In vitro synthesis of 32 translation-factor proteins from a single template reveals impaired ribosomal processivity. Sci. Rep. 11:1898, 1-12, 2021
Open access https://doi.org/10.1038/s41598-020-80827-8

Bao, L, Menon, P N K, Liljeruhm, J, Forster, A C. Overcoming chromoprotein limitations by engineering a red fluorescent protein. Anal. Biochem. 611:113936, 1-8, 2020
Open access https://doi.org/10.1016/j.ab.2020.113936

Vogel, C, Gynnå, A, Yuan, J, Bao, L, Liljeruhm, J, Forster, A C. Rationally-designed Spot 42 RNAs with an inhibition/toxicity profile advantageous for engineering E. coli. Engineering Rep., 2:3, e12126, 1-10, 2020
Our front cover and open access: https://doi.org/10.1002/eng2.12126

Liljeruhm, J, Wang, J, Kwiatkowski, M, Sabari, S, Forster, A C. Kinetics of D-amino acid incorporation in translation. ACS Chem. Biol. 14:204-213, 2019
Open access: https://doi.org/10.1021/acschembio.8b00952

Wang, J, Forster, A C. Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies. Curr. Opin. Chem. Biol. 46:180-187, 2018
Open access: https://doi.org/10.1016/j.cbpa.2018.07.009

Liljeruhm, J, Funk, S K, Tietscher, S, Edlund, A D, Jamal, S, Wistrand-Yuen, P, Dyrhage, K, Gynnå, A, Ivermark, K, Lövgren, J, Törnblom, V, Virtanen, A, Lundin, E R, Wistrand-Yuen, E, Forster, A C. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. J. Biol. Eng. 12:8, 1-10, 2018
https://doi.org/10.1186/s13036-018-0100-0

Shepherd, T R, Du, L, Liljeruhm, J, Samudyata, Wang, J, Sjödin, M O D, Wetterhall, M, Yomo, T, Forster, A C. De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res. 45, 10895-10905, 2017

Wang, J, Forster, A C. Translational roles of the C75 2'OH in an in vitro tRNA transcript at the ribosomal A, P and E sites. Sci. Rep. 7, 6709, 1-8, 2017

Wang, J, Kwiatkowski, M, Forster, A C. Ribosomal peptide syntheses from activated substrates reveal rate limitation by an unexpected step at the peptidyl site. J. Am. Chem. Soc. 138, 15587-15595, 2016

Wang, J, Kwiatkowski, M, Forster, A C. Kinetics of tRNAPyl-mediated amber suppression in E. coli translation reveals unexpected limiting steps and competing reactions. Biotechnol. Bioeng. 113, 1552-1559, 2016

Wang, J, Kwiatkowski, M, Forster, A C. Kinetics of ribosome-catalyzed polymerization using artificial aminoacyl-tRNA substrates clarifies inefficiencies and improvements. ACS Chem. Biol. 10, 2187-2192, 2015

Kwiatkowski, M, Wang, J, Forster, A C. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjugate Chem. 25, 2086-2091, 2014

Liljeruhm, J, Gullberg, E, Forster A C. Synthetic biology: A lab manual. World Scientific Press, 204 pp, 2014
http://www.worldscientific.com/worldscibooks/10.1142/9061#t=aboutBook

Wang, J, Kwiatkowski, M, Pavlov, M Y, Ehrenberg, M, Forster, A C. Peptide formation by N-methyl amino acids in translation is hastened by higher pH and tRNAPro. ACS Chem. Biol. 9, 1303-1311 and front cover, 2014

Ieong, K-W, Pavlov, M Y, Kwiatkowski, M, Ehrenberg, M, Forster, A C. A tRNA body with high affinity for EF-Tu hastens ribosomal incorporation of unnatural amino acids. RNA 20, 632-643, 2014

Punekar, A, Liljeruhm, J, Shepherd, T R, Forster, A C, Selmer, M. Structural and functional insights into the molecular mechanism of rRNA m6A methyltransferase RlmJ. Nucleic Acids Res. 41, 9537-9548, 2013

Quax, T E F, Wolf, Y I, Koehorst, J J, Wurtzel, O, van der Oost, R, Ran, W, Blombach, F, Makarova, K S, Brouns, S J J, Forster, A C, Wagner, E G H, Sorek, R, Koonin, E V, van der Oost, J. Differential translation tunes uneven production of operon-encoded proteins. Cell Rep. 4, 938-944, 2013

Ieong, K-W, Pavlov, M Y, Kwiatkowski, M, Forster, A C, Ehrenberg, M. Inefficient delivery but fast peptide bond formation of unnatural L-aminoacyl-tRNAs in translation, J. Am. Chem. Soc. 134, 17955-17962, 2012

Punekar, A, Shepherd, T R, Liljeruhm, J, Forster, A C, Selmer, M. Crystal structure of RlmM, the 2'O-ribose methyltransferase for C2498 of E. coli 23S rRNA. Nucleic Acids Res., 40, 10507-10520, 2012

Forster, A C. Synthetic biology challenges long-held hypotheses in translation, codon bias and transcription. Biotech. J., 7, 835-845, 2012

Forster, A C, Lee, S Y. Editorial: NextGen SynBio has arrived... Biotech. J., 7, 827, 2012

Du, L, Villarreal, S, Forster, A C. Multigene expression in vivo: supremacy of large versus small terminators for T7 RNA polymerase. Biotechnol. Bioeng., 109, 1043-1050, 2012

Wang, H H, Huang, P-Y, Xu, G, Haas, W, Marblestone, A, Li, J, Gygi, S P, Forster, A C, Jewett, M C, Church, G M. Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth. Biol., 1, 43-52, 2012

Watts, R E, Forster, A C. Update on pure translation display with unnatural amino acid incorporation. Meth. Mol. Biol., 805, 349-365, 2012

Gao, R, Forster, A C. Changeability of individual domains of an aminoacyl-tRNA in polymerization by the ribosome. FEBS Lett., 584(1), 99-105, 2010

Jewett, M C, Forster, A C. Update on designing and building minimal cells. Curr. Opin. Biotech., 21, 697-703, 2010

Watts, R E, Forster, A C. Chemical models of peptide formation in translation. Biochem., 49, 2177-2185, 2010

Du, L, Gao, R, Forster, A C. Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnol. Bioeng., 104, 1189-1196, 2009

Forster, A C. Low modularity of aminoacyl-tRNA substrates in polymerization by the ribosome. Nucleic Acids Res., 37, 3747-3755, 2009

Pavlov, M Y, Watts, R E, Tan, Z, Cornish, V W, Ehrenberg, M, Forster, A C. Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc. Natl. Acad. Sci. USA, 106(1), 50-4, 2009

Forster, A C, Church, G M. Synthetic biology projects in vitro. Genome Res., 17(1), 1-6 and front cover, 2007

Zhang, B, Tan, Z, Gartenmann Dickson, L, Nalam, M N L, Cornish, V W, Forster, A C. Specificity of Translation for N-Alkyl Amino Acids. J. Am. Chem. Soc., 129(37), 11316-11317, 2007

Forster, A C, Church, G M. Towards synthesis of a minimal cell. Mol. Syst. Biol., 2(45), 1-10, 2006

Forster, A C. Engineering translation: A nano-review. Methods, 36(3), 225-6, 2005

Tan, Z, Blacklow, S C, Cornish, V W, Forster, A C. De novo genetic codes and pure translation display. Methods, 36(3), 279-90, 2005

Forster, A C, Cornish, V W, Blacklow, S C. Pure translation display. Anal. Biochem., 333(2), 358-64, 2004

Tan, Z, Forster, A C, Blacklow, S C, Cornish, V W. Amino acid backbone specificity of the Escherichia coli translation machinery. J. Am. Chem. Soc., 126(40), 12752-3, 2004

Forster, A C, Tan, Z, Nalam, M N L, Lin, H, Qu, H, Cornish, V W, Blacklow, S C. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc. Natl. Acad. Sci. USA, 100(11), 6353-7, 2003

Forster, A C, Weissbach, H, Blacklow, S C. A simplified reconstitution of mRNA-directed peptide synthesis: activity of the epsilon enhancer and an unnatural amino acid. Anal. Biochem., 297(1), 60-70, 2001

Li, E, Beard, C, Forster, A C, Bestor, T H, Jaenisch, R. DNA methylation, genomic imprinting, and mammalian development. Cold Spring Harb. Symp. Quant. Biol., 58, 297-305, 1993

Forster, A C, Altman, S. External guide sequences for an RNA enzyme. Science, 249(4970), 783-6, 1990

Forster, A C, Altman, S. Similar cage-shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell, 62(3), 407-9, 1990

Forster, A C, Davies, C, Hutchins, C J, Symons, R H. Characterization of self-cleavage of viroid and virusoid RNAs. Meth. Enzymol., 181, 583-607, 1990

McInnes, J L, Forster, A C, Skingle, D C, Symons, R H. Preparation and uses of photobiotin. Meth. Enzymol., 184, 588-600, 1990

Forster, A C, Davies, C, Sheldon, C C, Jeffries, A C, Symons, R H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature, 334(6179), 265-7, 1988

McInnes, J L, Forster, A C, Symons, R H. Photobiotin-labelled DNA and RNA hybridization probes. Meth. Mol. Biol., 4, 401-414, 1988

Forster, A C, Jeffries, A C, Sheldon, C C, Symons, R H. Structural and ionic requirements for self-cleavage of virusoid RNAs and trans self-cleavage of viroid RNA. Cold Spring Harb. Symp. Quant. Biol., 52, 249-59, 1987

Forster, A C, Symons, R H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell, 50(1), 9-16, 1987

Forster, A C, Symons, R H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell, 49(2), 211-20, 1987

Symons, R H, Hutchins, C J, Forster, A C, Rathjen, P D, Keese, P, Visvader, J E. Self-cleavage of RNA in the replication of viroids and virusoids. J. Cell Sci. Suppl., 7, 303-18, 1987

Hutchins, C J, Rathjen, P D, Forster, A C, Symons, R H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res., 14(9), 3627-40, 1986

Forster, A C, McInnes, J L, Skingle, D C, Symons, R H. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res., 13(3), 745-61, 1985

Visvader, J E, Forster, A C, Symons, R H. Infectivity and in vitro mutagenesis of monomeric cDNA clones of citrus exocortis viroid indicates the site of processing of viroid precursors. Nucleic Acids Res., 13(16), 5843-56, 1985

Lab pics

















UAG