Freimoser:Research

From OpenWetWare
Revision as of 12:56, 7 October 2006 by Freimoser (talk | contribs)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

<html><style type='text/css'> A:link {

   text-decoration: underline;
   font-size: 10pt;
   font-style: normal;
   font-family: arial, trebuchet ms;
   color: #003399;

}

A:visited {

   text-decoration: underline;
   font-size: 10pt;
   font-style: normal;
   font-family: arial, trebuchet ms;
   color: #003399;

} A:active {

   text-decoration: none;
   background-color: #99ccff;
   color: #660099;

}

A:hover {

   text-decoration: none;
   color: #ff0033;

}

.navbar{

 padding: 0px;
 width: "100%";
 font-family: Arial;
 font-size: 10pt;

} </style></html>

Research

Inorganic polyphosphate (poly P) occurs ubiquitously in all living cells and regulates many molecular and biological processes. Nevertheless, poly P is scarcely studied and little is known about poly P metabolism and its exact molecular functions; especially in eukaryotes. In our group we have developed methods to quantify poly P, to stain and localize poly P and to screen for poly P binding proteins. We are using these tools to investigate poly P metabolism and functions in fungi, plants and algae. However, at the moment our main efforts are devoted to the study of poly P metabolism in the yeast Saccharomyces cerevisiae and of poly P in fungal cell walls.

Poly P in Saccharomyces cerevisiae:

We have developed a fast and easy method for the quantification of poly P in yeast, which is amenable for large-scale analyses. This allowed extraction and quantification of poly P in mutant strains of all non-essential yeast genes. From this screen we conclude that at least 5% of all yeast genes are required for the maintenance of normal poly P levels. We are now studying specific pathways to determine their link with poly P metabolism. In addition, we study phenotypical differences in poly P hypo- and hyper-accumulating strains in order to learn more about the biological significance of poly P accumulation in yeast.

Cell wall localized poly P:

One of our major goals and a very difficult problem is the specific localization of poly P. We have developed a staining method that is based on poly P binding proteins and immunohistochemical detection that allows for highly sensitive localization of poly P in fungal cell walls. We have used this technique for a systematic study of poly P in fungi from all fungal phyla. In the future we will also define procedures to stain poly P intracellularly.