Haynes:Making BioBricks

From OpenWetWare
Jump to navigationJump to search

Making Standardized DNA Parts

By Karmella Haynes, 2012


First, identify a DNA “module” (e.g. promoter, coding region, etc.) and determine whether it contains any BioBrick cloning sites. If so, use site-directed mutagenesis or some other method to eliminate the sites without compromising the function of the module (e.g., silent mutation in a protein-coding sequence). Next, use one of the following methods to flank the module with BioBrick ends:
  • Double-stranded Oligo Insert: A part that is smaller than ~85 bp can be made into an oligonucleotide insert.
  • Overlapping Oligos: A part that is between ~ 85 - 150 bp can be assembled from smaller overlapping oligonucleotides.
  • PCR Amplification: For a part that is larger than ~150 bp and is based on an existing DNA fragment, use PCR amplification of the existing DNA.


Double-stranded Oligo Insert

1. Design your oligos: An oligo insert should have a XbaI sticky end upstream of the part, SpeI and NotI sites downstream, and a PstI sticky end downstream.

Sense oligo: 5' CTAGA[coding sequence]ACTAGTAGCGGCCGCTGCA 3'
Anti-sense oligo: 5' GCGGCCGCTACTAGT[reverse complement of coding sequence]T 3'

Double stranded result:

5' ctaga [coding sequence] actagt a gcggccgctgca 3'
| ||||||||||||||||| |||||| | ||||||||
3' t [rev. comp. seq.] tgatca t cgccggcg 5'


2. Have the oligos synthesized (you can order through a company like www.idtdna.com).
Troubleshooting note: order the oligos with 5’ phosphates (optional) if you are having difficulty cloning.

3. Set up an annealing reaction as follows:

Sense oligo 1 (100 μM) 3.0 μl
Anti-sense oligo (100 μM) 3.0 μl
10x annealing buffer* 2.0 μl
dH2O 12.0 μl
nbsp; 50 μl

Heat at 100°C for 5 min., remove the entire heat block or water bath from the heat source, and allow to cool slowly to room temperature.
--> *10x annealing buffer: 1 M NaCl; 100 mM Tris-HCl, pH 7.4


4. If you need to calculate the amount of insert needed to set up a specific ratio of insert to vector for the ligation, use this formula to estimate ng/μl of the oligo insert:
[(total ng stock oligo 1 / μl dH2O used to dissolve dry oligo 1 + total ng stock oligo 2 / μl dH2O used to dissolve dry oligo 2) * 3 μl] / 20 μl

5. Ligate the double-stranded insert into a linearized vector with XbaI and PstI ends and transform into E. coli. (use any standard ligation/ transformation protocol)

Overlapping Oligos

1. Design your oligos: You can use software, such as “Oligo Cuts” (L. Harden, Davidson College, http://gcat.davidson.edu/IGEM06/oligo.html), to determine the optimal length and number of oligos for building your BioBrick. An example is shown below:

[ Oligo A ][  other  ][ other ][ Oligo B ]
||||||||||||||||||||||||||||||||||||||||||
[    Oligo D    ][  other  ][  Oligo C   ]

Add the following modifications to the oligos that were generated by the program:

5’ sense oligo (A): 5’ CTAGA [oligo sequence] 3’
3’ sense oligo (B): 5’ [oligo sequence] ACTAGTAGCGGCCGCTGCA 3’
5’ anti-sense oligo (C): 5’ GCGGCCGCTACTAGT [oligo sequence] 3’
3’ anti-sense oligo (D): 5’ [oligo sequence] T 3’

The final insert will have a XbaI sticky end upstream of the part, SpeI and NotI sites downstream, and a PstI sticky end downstream.

2. Have the oligos synthesized (you can order through a company like www.idtdna.com). Note: To avoid self-ligation of the oligo insert during the final ligation, do not add 5’ phosphates to the oligos. DNA nicks in the insert-vector ligation will be repaired via plasmid replication in E. coli.

3. Set up an annealing reaction as follows:

Oligo (100 μM) 3.0 μl of each
10x annealing buffer* 2.0 μl
dH2O ____ μl
  20 μl

Heat at 100°C for 5 min., remove the entire heat block or water bath from the heat source, and allow to cool slowly to room temperature.
--> *10x annealing buffer: 1 M NaCl; 100 mM Tris-HCl, pH 7.4

4. Use this formula to estimate ng/μl of the oligo insert:
[(total ng stock oligo 1 / μl dH2O used to dissolve dry oligo 1 + total ng stock oligo 2 / μl dH2O used to dissolve dry oligo 2 + …n) * 3 μl] / 20 μl

5. Ligate the double-stranded insert into a linearized vector with XbaI and PstI ends and transform into E. coli. (use any standard ligation/ transformation protocol)


PCR Amplification