From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
Line 72: Line 72:
|.5deg fugal:1.5deg,petal:0<cite>Musseler98</cite>
|.5deg fugal:1.5deg,petal:0<cite>Musseler98</cite>
|0<cite>LinaresHolcombe2008xx</cite>,<27ms<cite>MusselerKerzel04</cite> fugal:10ms,petal:15ms<cite>Musseler98</cite>,79ms<cite>WhitneyCavanagh02</cite>
|0<cite>LinaresHolcombe2008xx</cite>,<27ms<cite>MusselerKerzel04</cite> fugal:10ms,petal:15ms<cite>Musseler98</cite>,0-5ms<cite>Kerzel02</cite>,2-8ms<cite>MusselerNeumann92</cite>,79ms<cite>WhitneyCavanagh02</cite>

Revision as of 04:14, 1 March 2009


Alex Holcombe
Polly Barr
• Charlie Ludowici
• Kim Ransley
• Ingrid Van Tongeren
William Ngiam
Fahed Jbarah
• Patrick Goodbourn


Testing Booth Calendar
Temporal Review
Vernier related
Binding MOT lags
Light and latency
Position and motion


Skills Checklist
Python Programming
Psychopy/VisionEgg Installation Notes
R analysis,plot,stats
Buttonbox with photocell
Programming Cheat Sheets

Biphasic Neuron Extrap
A-V flash lag

Following on from [1]

  • The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
  • Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
  • To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.

Phenomenon Spatial Bias Temporal Bias (increase w/speed beyond thresh) Spatial Variab Temporal Variab Foveo attn effect vectors sum landmarks monotonic inc w/ motion dur n. transient most importnt
Flash-lag some little 0 80ms petal[1],[2]  ? yes less spatial σ? yes? yes
Cai .5deg 0[3, 4] ? 0 fugal[5] ??
Hazelhoff,[6] 0 large ?? discrepant Ss[5] ?? ?? ?? ??
Whitney&Cav signif ~0[7],[8] ?? betting0 ?? large  ?
Frohlich .5deg fugal:1.5deg,petal:0[9] 0[5],<27ms[10] fugal:10ms,petal:15ms[9],0-5ms[11],2-8ms[12],79ms[7]


? 0 fugal[9, 14],0[5] large N/A
onset-repuls <=15ms[15],[16]
repr momentum 33ms[16]
deValois large miniscule miniscule fugal[1] NO
kinetic edge[17] read[18] [18] [18] petal[18]
Motion adapt saturat at 5degpersec/Hz[19] ~0[20] ~0[20] fugal Yes[20]
binding 0[21]
induced motion 0? Yes[22]
timed buttonpress

Temporal variability might arise from:

  1. Position shifting that increases with velocity, with constant noise added to velocity
  2. Uncertainty in *when* the judgment was supposed to be made
  3. For any effects caused by afferent latency (Hazelhoff?), variability in latency

deValois stands out as only temporal bias with spatial variability. Then why doesn't Cai and Frohlich have temporal bias? Only easy explanation would be the possibly-greater blur of the deValois stimuli, so we have to check that. Increasing eccentricity would also increase the spatial uncertainty[23] perhaps allowing temporal to manifest


Error fetching PMID 18824016:
Error fetching PMID 2102995:
Error fetching PMID 16645880:
Error fetching PMID 10966628:
Error fetching PMID 15208006:
Error fetching PMID 11747866:
Error fetching PMID 18753324:
Error fetching PMID 1604838:
Error fetching PMID 15358076:
Error fetching PMID 11991576:
Error fetching PMID 9628999:
Error fetching PMID 1494610:
Error fetching PMID 11809472:
Error fetching PMID 10746140:
Error fetching PMID 2726403:
Error fetching PMID 9843685:
Error fetching PMID 18717394:
Error fetching PMID 10050853:
  1. Error fetching PMID 18753324: [LinaresHolcombe2008neurophys]
  2. Error fetching PMID 15358076: [KanaiShethShimojo04]
  3. Error fetching PMID 18717394: [Gauch08]
  4. Linares D, Holcombe AO. Unpublished results. 2008 [LinaresHolcombe2008xx]
  5. Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188 [HazelhoffWiersma1924]
  6. Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of moving stimuli. Visual Cognition 9:139–152. [WhitneyCavanagh02]
  7. Error fetching PMID 10966628: [WhitneyCavanagh00]
  8. Error fetching PMID 9628999: [Musseler98]
  9. Error fetching PMID 15208006: [MusselerKerzel04]
  10. Error fetching PMID 11809472: [Kerzel02]
  11. Error fetching PMID 1494610: [MusselerNeumann92]
  12. Error fetching PMID 10746140: [Kirschfeld98]
  13. Error fetching PMID 16645880: [CarbonePomplun07]
  14. Error fetching PMID 11991576: [Thornton02]
  15. Error fetching PMID 11747866: [HubbardMotes]
  16. Error fetching PMID 2102995: [RamaAnstis90]
  17. Error fetching PMID 18824016: [FanHarris08]
  18. Error fetching PMID 9843685: [Snowden98]
  19. Error fetching PMID 10050853: [NishidaJohnston99]
  20. Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653 [Holcombe09]
  21. Error fetching PMID 2726403: [PostEtAl89]
  22. Error fetching PMID 1604838: [WhiteLeviAitsebaomo1992]
All Medline abstracts: PubMed HubMed
Personal tools