Holcombe:PositionAndMotion: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(86 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Template:Holcombe}}
{{Template:Holcombe}}
&bull; [[Holcombe:BiphasicSim|Biphasic Neuron Extrap]]<br>
&bull; [[Holcombe:AVflashLag|A-V flash lag]]<br>
==Following on from Dani's J. Neurophysiology paper==
* The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
* Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
* To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.




{| border="1" cellspacing="0" cellpadding="3" align="center"
{| border="1" cellspacing="0" cellpadding="3" align="center"
! Phenomenon
! Phenomenon
! interval before transient
! interval after transient
! Spatial Bias
! Spatial Bias
! Temporal Bias
! Temporal Bias- increase w/speed, or temporal freq tuned
! Spatial Variab
! Spatial Variab
! Temporal Variab
! Temporal Variab
! Foveo
! Foveo
! attn effect
! attn effect
! vector summatn
! vectors sum /IOC
! land - marks
! monotonic inc w/ motion dur
! awareness necess
! feature space
! affects eyemove
! retinal motn sufficnt
|-  
|-  
| Flash-lag
| Flash-lag
|
| yes
| some
| some
| little
| little
| 0  
| 0  
| 80ms
| 80ms
| petal
| petal<cite>LinaresHolcombe2008neurophys</cite>,<cite>KanaiShethShimojo04</cite>
| ?
| ?
| yes
| yes<cite>EaglemanSejnowski07</cite>
| less spatial σ?
| yes?
|
| yes<cite>ShethNijhawanShimojo</cite>
|-
|-
|Cai
|Cai<cite>CaiSchlag01</cite>
|
|
|.5deg
|.5deg
|0
|0<cite>LinaresHolcombe2008xx,Gauch08</cite>
|?
|?
|0
|0
|??
|fugal<cite>LinaresHolcombe2008xx</cite>
|
|
|
|
|-
|-
|Cai&Schlag,<cite>HazelhoffWiersma1924</cite>
|Hazelhoff,<cite>HazelhoffWiersma1924</cite>
|
|yes<cite>RotmanBS04</cite>
|0
|0
|large
|large
Line 43: Line 58:
|??
|??
|??
|??
|
|
|-
|-
|Whitney&Cav
|Drifting motion's effect on flash<cite>WhitneyCavanagh00</cite>
|~80ms before matters, dunno greater<cite>RoachMcGraw09</cite>
|80ms later matters but not 300<cite>RoachMcGraw09</cite>
|signif
|signif
|0
|~0<cite>WhitneyCavanagh02</cite>,<cite>WhitneyCavanagh00</cite>
|??
|??
|betting0
|betting0
|??
|??
|large
|large
|
|
|
|
|
|not early<cite>deSperati08</cite>
|-
|Translating object's effect on flash<cite>YilmazEtAl07</cite>
|
|yes<cite>DurantJohnston</cite><cite>WatanabeSatoShimojo</cite>
|
|0<cite>DurantJohnston</cite>,not much<cite>WatanabeSatoShimojo</cite>
|
|
|
|
|
|
|
|-
|-
|Frohlich
|Frohlich
|.5deg
|
|0
|N/A
|.5deg fugal:1.5deg,petal:0<cite>Musseler98</cite>
|0<cite>LinaresHolcombe2008xx</cite>,<27ms<cite>MusselerKerzel04</cite> fugal:10ms,petal:15ms<cite>Musseler98</cite>,0-5ms<cite>Kerzel02</cite>,2-8ms<cite>MusselerNeumann92</cite>,79ms<cite>WhitneyCavanagh02</cite>
39ms<cite>KerzelMusseler02</cite>,100ms<cite>Kirschfeld98</cite>
|?
|?
|0
|0
|fugal
|fugal<cite>CarbonePomplun07,Musseler98</cite>,0<cite>LinaresHolcombe2008xx</cite>
|large
|large
|
|
|
|no<cite>ArnoldThompsonJohnston</cite>
|-
|Offset localization
|
|
|small
|flash-terminated saturated at slow<cite>KanaiShethShimojo04</cite>,offset of blurred peaked at slow<cite>FuShenDan01</cite>
|
|
|
|-
|onset-repuls
|
|
|
|<=15ms<cite>Thornton02</cite>,<cite>HubbardMotes</cite>
|-
|repr momentum
|
|
|illusion only happens with eye move?<cite>Kerzel05</cite>
|33ms<cite>HubbardMotes</cite>
|
|
|
|
|
|
|
|
|
|-
|-
|deValois
|deValois
|
|
|large
|
|
|large<cite>ChungEtAl07</cite><cite>MatherPavan2009</cite> Tuned to temporal freq <cite>BresslerWhitney06</cite><cite>deValois91</cite>
|miniscule
|miniscule
|miniscule
|miniscule
|fugal<cite>LinaresHolcombe2008neurophys</cite>
|
|yes<cite>MatherPavan2009</cite>,<cite>RiderMcOwanJohnston09</cite>
|
|NO
|No<cite>Whitney05</cite>
|-
|kinetic edge<cite>RamaAnstis90</cite>
|
|
|
|read<cite>FanHarris08</cite>
|<cite>FanHarris08</cite>
|<cite>FanHarris08</cite>
|petal<cite>FanHarris08</cite>
|-
|bg motion->IC<cite>LiKhuuHayes09</cite>
|
|not much? only 2 speeds tested<cite>LiKhuuHayes09</cite>
|
|
|
|-
|Motion capture<cite>RamaInada1985</cite>
|
|-
|Motion adapt
|
|
|
|saturat at 5degpersec/Hz<cite>Snowden98</cite>
|~0<cite>NishidaJohnston99</cite>
|~0<cite>NishidaJohnston99</cite>
|fugal
|fugal
|
|
|
|Yes<cite>NishidaJohnston99</cite>
|
|No<cite>Whitney06</cite>
|-
|binding
|
|
|
|
|0<cite>Holcombe09</cite>
|-
|Tandem<cite>MusselerNeumann92</cite>
|
|-
|induced motion
|
|0?
|
|
|
|
|
|
|Yes<cite>PostEtAl89</cite>
|-
|10Hz jitter<cite>ArnoldJohnston03</cite>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|yes
|-
|-
|Motion adapt
|Floating square<cite>CarlsonSchraterHe06</cite>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|fugal
|
|
|
|
|no
|-
|-
|timed buttonpress
|timed buttonpress
|}
|}
Miscellaneous
motion-defined motion contours also are perceived shifted<cite>DurantZanker09</cite>
===Refs===
<biblio>
#ArnoldJohnston03 pmid=12968181
#CaiSchlag01 Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127
#DurantZanker09 pmid=19126535
#EaglemanSejnowski07 pmid=17461687
#ChungEtAl07 pmid=17190608
#FanHarris08 pmid=18824016
#RamaAnstis90 pmid=2102995
#FuShenDan01 pmid=11588202
#ArnoldThompsonJohnston pmid=17643464
#KanaiShethShimojo04 pmid=15358076
#CarbonePomplun07 pmid=16645880
#DurantJohnston pmid=14659962
#WhitneyCavanagh02 Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of
moving stimuli. Visual Cognition 9:139–152.
#WhitneyCavanagh00 pmid=10966628
#HazelhoffWiersma1924 Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188
#Kerzel05 Representation Momentum Beyond Internalized Physics. Current Directions in Psychological Science. 2005; 14:4
#MusselerKerzel04 pmid=15208006
#HubbardMotes pmid=11747866
#deValois91 pmid=1949630
#LinaresHolcombe2008neurophys pmid=18753324
#LinaresHolcombe2008xx Linares D, Holcombe AO. Unpublished results. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability.
#Moradi http://www.klab.caltech.edu/~farshadm/demo/
#WhiteLeviAitsebaomo1992 pmid=1604838
#KanaiShethShimojo04 pmid=15358076
#deSperati08 pmid=18434509
#Thornton02 pmid=11991576
#Musseler98 pmid=9628999
#RiderMcOwanJohnston09 pmid=20055541
#MusselerNeumann92 pmid=1494610
#CarlsonSchraterHe06 pmid=16522140
#Kerzel02 pmid=12136384
#KerzelMusseler02 pmid=11809472
#Kirschfeld98 pmid=10746140
#MatherPavan2009 pmid=19761786
#PostEtAl89 pmid=2726403
#RamaInada1985 pmid=3940050
#RoachMcGraw09 pmid=19812288
#Snowden98 pmid=9843685
#Gauch08 pmid=18717394
#RotmanBS04 pmid=15330702
#YilmazEtAl07 pmid=17697692
#NishidaJohnston99 pmid=10050853
#LiKhuuHayes09 pmid=18831614
#ShethNijhawanShimojo pmid=10769390
#Holcombe09  Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653
#WatanabeSatoShimojo pmid=17184808
#Whitney06 pmid=17154779
#Whitney05 pmid=15886084
#BresslerWhitney06 pmid=16359721
</biblio>
&bull; [[Holcombe:BiphasicSim|Biphasic Neuron Extrap]]<br>
&bull; [[Holcombe:AVflashLag|A-V flash lag]]<br>
&bull; [[Holcombe:Fugalpetal|foveo fugal/petal biases]]<br>
Temporal variability might arise from:
Temporal variability might arise from:
#Position shifting that increases with velocity, with constant noise added to velocity  
#Position shifting that increases with velocity, with constant noise added to velocity  
#Uncertainty in *when* the judgment was supposed to be made
#Uncertainty in *when* the judgment was supposed to be made
#For any effects caused by afferent latency (Hazelhoff?), variability in latency


<biblio>
deValois stands out as only temporal bias with spatial variability. Then why doesn't Cai and Frohlich have temporal bias? Only easy explanation would be the possibly-greater blur of the deValois stimuli, so we have to check that. Increasing eccentricity would also increase the spatial uncertainty<cite>WhiteLeviAitsebaomo1992</cite> perhaps allowing temporal to manifest
#HazelhoffWiersma1924 Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188
 
#LinaresHolcombe2008xx Linares D, Holcombe AO. Unpublished results. 2008
 
</biblio>
* The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
===Other differences between foveofugal and foveopetal motion===
* Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
* FLE bigger for motion towards fovea, deValois bigger for motion away from fovea (Linares & Holcombe, 2008)
* To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.
* something in White J M, Levi D M, Aitsebaomo A P, 1992 "Spatial localization without visual references" Vision Research 32 513-526 ??

Revision as of 20:23, 15 August 2010

Recent members

Alex Holcombe
• Ryo Nakayama



Technical

Skills Checklist
Python Programming
Psychopy/VisionEgg Installation Notes
R analysis,plot,stats
Statistics
Buttonbox
Buttonbox with photocell
Programming Cheat Sheets



Phenomenon interval before transient interval after transient Spatial Bias Temporal Bias- increase w/speed, or temporal freq tuned Spatial Variab Temporal Variab Foveo attn effect vectors sum /IOC land - marks monotonic inc w/ motion dur awareness necess feature space affects eyemove retinal motn sufficnt
Flash-lag yes some little 0 80ms petal[1],[2] ? yes[3] less spatial σ? yes? yes[4]
Cai[5] .5deg 0[6, 7] ? 0 fugal[6]
Hazelhoff,[8] yes[9] 0 large ?? discrepant Ss[6] ?? ?? ??
Drifting motion's effect on flash[10] ~80ms before matters, dunno greater[11] 80ms later matters but not 300[11] signif ~0[12],[10] ?? betting0 ?? large not early[13]
Translating object's effect on flash[14] yes[15][16] 0[15],not much[16]
Frohlich N/A .5deg fugal:1.5deg,petal:0[17] 0[6],<27ms[18] fugal:10ms,petal:15ms[17],0-5ms[19],2-8ms[20],79ms[12]

39ms[21],100ms[22]

? 0 fugal[17, 23],0[6] large no[24]
Offset localization small flash-terminated saturated at slow[2],offset of blurred peaked at slow[25]
onset-repuls <=15ms[26],[27]
repr momentum illusion only happens with eye move?[28] 33ms[27]
deValois large[29][30] Tuned to temporal freq [31][32] miniscule miniscule fugal[1] yes[30],[33] NO No[34]
kinetic edge[35] read[36] [36] [36] petal[36]
bg motion->IC[37] not much? only 2 speeds tested[37]
Motion capture[38]
Motion adapt saturat at 5degpersec/Hz[39] ~0[40] ~0[40] fugal Yes[40] No[41]
binding 0[42]
Tandem[20]
induced motion 0? Yes[43]
10Hz jitter[44] yes
Floating square[45] no
timed buttonpress

Miscellaneous

motion-defined motion contours also are perceived shifted[46]

Refs

  1. Linares D and Holcombe AO. Position perception: influence of motion with displacement dissociated from the influence of motion alone. J Neurophysiol. 2008 Nov;100(5):2472-6. DOI:10.1152/jn.90682.2008 | PubMed ID:18753324 | HubMed [LinaresHolcombe2008neurophys]
  2. Kanai R, Sheth BR, and Shimojo S. Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res. 2004;44(22):2605-19. DOI:10.1016/j.visres.2003.10.028 | PubMed ID:15358076 | HubMed [KanaiShethShimojo04]
  3. Kanai R, Sheth BR, and Shimojo S. Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res. 2004;44(22):2605-19. DOI:10.1016/j.visres.2003.10.028 | PubMed ID:15358076 | HubMed [KanaiShethShimojo04]
  4. Eagleman DM and Sejnowski TJ. Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. J Vis. 2007 Mar 13;7(4):3. DOI:10.1167/7.4.3 | PubMed ID:17461687 | HubMed [EaglemanSejnowski07]
  5. Sheth BR, Nijhawan R, and Shimojo S. Changing objects lead briefly flashed ones. Nat Neurosci. 2000 May;3(5):489-95. DOI:10.1038/74865 | PubMed ID:10769390 | HubMed [ShethNijhawanShimojo]
  6. Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127

    [CaiSchlag01]
  7. Linares D, Holcombe AO. Unpublished results. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability.

    [LinaresHolcombe2008xx]
  8. Gauch A and Kerzel D. Perceptual asynchronies between color and motion at the onset of motion and along the motion trajectory. Percept Psychophys. 2008 Aug;70(6):1092-103. DOI:10.3758/pp.70.6.1092 | PubMed ID:18717394 | HubMed [Gauch08]
  9. Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188

    [HazelhoffWiersma1924]
  10. Rotman G, Brenner E, and Smeets JB. Mislocalization of targets flashed during smooth pursuit depends on the change in gaze direction after the flash. J Vis. 2004 Jul 13;4(7):564-74. DOI:10.1167/4.7.4 | PubMed ID:15330702 | HubMed [RotmanBS04]
  11. Whitney D and Cavanagh P. Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci. 2000 Sep;3(9):954-9. DOI:10.1038/78878 | PubMed ID:10966628 | HubMed [WhitneyCavanagh00]
  12. Roach NW and McGraw PV. Dynamics of spatial distortions reveal multiple time scales of motion adaptation. J Neurophysiol. 2009 Dec;102(6):3619-26. DOI:10.1152/jn.00548.2009 | PubMed ID:19812288 | HubMed [RoachMcGraw09]
  13. Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of

    moving stimuli. Visual Cognition 9:139–152.

    [WhitneyCavanagh02]
  14. de'Sperati C and Baud-Bovy G. Blind saccades: an asynchrony between seeing and looking. J Neurosci. 2008 Apr 23;28(17):4317-21. DOI:10.1523/JNEUROSCI.0352-08.2008 | PubMed ID:18434509 | HubMed [deSperati08]
  15. Yilmaz O, Tripathy SP, Patel SS, and Ogmen H. Attraction of flashes to moving dots. Vision Res. 2007 Sep;47(20):2603-15. DOI:10.1016/j.visres.2007.06.017 | PubMed ID:17697692 | HubMed [YilmazEtAl07]
  16. Durant S and Johnston A. Temporal dependence of local motion induced shifts in perceived position. Vision Res. 2004 Feb;44(4):357-66. DOI:10.1016/j.visres.2003.09.022 | PubMed ID:14659962 | HubMed [DurantJohnston]
  17. Tsui SY, Khuu SK, and Hayes A. The perceived position shift of a pattern that contains internal motion is accompanied by a change in the pattern's apparent size and shape. Vision Res. 2007 Feb;47(3):402-10. DOI:10.1016/j.visres.2006.11.003 | PubMed ID:17184808 | HubMed [WatanabeSatoShimojo]
  18. Müsseler J and Aschersleben G. Localizing the first position of a moving stimulus: the Fröhlich effect and an attention-shifting explanation. Percept Psychophys. 1998 May;60(4):683-95. DOI:10.3758/bf03206055 | PubMed ID:9628999 | HubMed [Musseler98]
  19. Müsseler J and Kerzel D. The trial context determines adjusted localization of stimuli: reconciling the Fröhlich and onset repulsion effects. Vision Res. 2004;44(19):2201-6. DOI:10.1016/j.visres.2004.04.007 | PubMed ID:15208006 | HubMed [MusselerKerzel04]
  20. Kerzel D. Different localization of motion onset with pointing and relative judgements. Exp Brain Res. 2002 Aug;145(3):340-50. DOI:10.1007/s00221-002-1126-5 | PubMed ID:12136384 | HubMed [Kerzel02]
  21. Müsseler J and Neumann O. Apparent distance reduction with moving stimuli (Tandem Effect): evidence for an attention-shifting model. Psychol Res. 1992;54(4):246-66. DOI:10.1007/BF01358263 | PubMed ID:1494610 | HubMed [MusselerNeumann92]
  22. Kerzel D and Müsseler J. Effects of stimulus material on the Fröhlich illusion. Vision Res. 2002 Jan;42(2):181-9. DOI:10.1016/s0042-6989(01)00271-1 | PubMed ID:11809472 | HubMed [KerzelMusseler02]
  23. Kirschfeld K and Kammer T. The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res. 1999 Nov;39(22):3702-9. DOI:10.1016/s0042-6989(99)00089-9 | PubMed ID:10746140 | HubMed [Kirschfeld98]
  24. Carbone E and Pomplun M. Motion misperception caused by feedback connections: a neural model simulating the Fröhlich effect. Psychol Res. 2007 Nov;71(6):709-15. DOI:10.1007/s00426-006-0060-8 | PubMed ID:16645880 | HubMed [CarbonePomplun07]
  25. Arnold DH, Thompson M, and Johnston A. Motion and position coding. Vision Res. 2007 Aug;47(18):2403-10. DOI:10.1016/j.visres.2007.04.025 | PubMed ID:17643464 | HubMed [ArnoldThompsonJohnston]
  26. Fu YX, Shen Y, and Dan Y. Motion-induced perceptual extrapolation of blurred visual targets. J Neurosci. 2001 Oct 15;21(20):RC172. DOI:10.1523/JNEUROSCI.21-20-j0003.2001 | PubMed ID:11588202 | HubMed [FuShenDan01]
  27. Thornton IM. The onset repulsion effect. Spat Vis. 2002;15(2):219-43. DOI:10.1163/15685680252875183 | PubMed ID:11991576 | HubMed [Thornton02]
  28. Hubbard TL and Motes MA. Does representational momentum reflect a distortion of the length or the endpoint of a trajectory?. Cognition. 2002 Jan;82(3):B89-99. DOI:10.1016/s0010-0277(01)00156-1 | PubMed ID:11747866 | HubMed [HubbardMotes]
  29. Representation Momentum Beyond Internalized Physics. Current Directions in Psychological Science. 2005; 14:4

    [Kerzel05]
  30. Chung ST, Patel SS, Bedell HE, and Yilmaz O. Spatial and temporal properties of the illusory motion-induced position shift for drifting stimuli. Vision Res. 2007 Jan;47(2):231-43. DOI:10.1016/j.visres.2006.10.008 | PubMed ID:17190608 | HubMed [ChungEtAl07]
  31. Mather G and Pavan A. Motion-induced position shifts occur after motion integration. Vision Res. 2009 Nov;49(23):2741-6. DOI:10.1016/j.visres.2009.07.016 | PubMed ID:19761786 | HubMed [MatherPavan2009]
  32. Bressler DW and Whitney D. Second-order motion shifts perceived position. Vision Res. 2006 Mar;46(6-7):1120-8. DOI:10.1016/j.visres.2005.10.012 | PubMed ID:16359721 | HubMed [BresslerWhitney06]
  33. De Valois RL and De Valois KK. Vernier acuity with stationary moving Gabors. Vision Res. 1991;31(9):1619-26. DOI:10.1016/0042-6989(91)90138-u | PubMed ID:1949630 | HubMed [deValois91]
  34. Rider AT, McOwan PW, and Johnston A. Motion-induced position shifts in global dynamic Gabor arrays. J Vis. 2009 Dec 8;9(13):8.1-8. DOI:10.1167/9.13.8 | PubMed ID:20055541 | HubMed [RiderMcOwanJohnston09]
  35. Whitney D. Motion distorts perceived position without awareness of motion. Curr Biol. 2005 May 10;15(9):R324-6. DOI:10.1016/j.cub.2005.04.043 | PubMed ID:15886084 | HubMed [Whitney05]
  36. Ramachandran VS and Anstis SM. Illusory displacement of equiluminous kinetic edges. Perception. 1990;19(5):611-6. DOI:10.1068/p190611 | PubMed ID:2102995 | HubMed [RamaAnstis90]
  37. Fan Z and Harris J. Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Res. 2008 Dec;48(28):2793-804. DOI:10.1016/j.visres.2008.09.006 | PubMed ID:18824016 | HubMed [FanHarris08]
  38. Lee TC, Khuu SK, Li W, and Hayes A. Distortion in perceived image size accompanies flash lag in depth. J Vis. 2008 Aug 29;8(11):20.1-10. DOI:10.1167/8.11.20 | PubMed ID:18831614 | HubMed [LiKhuuHayes09]
  39. Ramachandran VS and Inada V. Spatial phase and frequency in motion capture of random-dot patterns. Spat Vis. 1985;1(1):57-67. DOI:10.1163/156856885x00080 | PubMed ID:3940050 | HubMed [RamaInada1985]
  40. Snowden RJ. Shifts in perceived position following adaptation to visual motion. Curr Biol. 1998 Dec 3;8(24):1343-5. DOI:10.1016/s0960-9822(07)00567-2 | PubMed ID:9843685 | HubMed [Snowden98]
  41. Nishida S and Johnston A. Influence of motion signals on the perceived position of spatial pattern. Nature. 1999 Feb 18;397(6720):610-2. DOI:10.1038/17600 | PubMed ID:10050853 | HubMed [NishidaJohnston99]
  42. Whitney D. Contribution of bottom-up and top-down motion processes to perceived position. J Exp Psychol Hum Percept Perform. 2006 Dec;32(6):1380-97. DOI:10.1037/0096-1523.32.6.1380 | PubMed ID:17154779 | HubMed [Whitney06]
  43. Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653

    [Holcombe09]
  44. Post RB, Chi D, Heckmann T, and Chaderjian M. A reevaluation of the effect of velocity on induced motion. Percept Psychophys. 1989 May;45(5):411-6. DOI:10.3758/bf03210714 | PubMed ID:2726403 | HubMed [PostEtAl89]
  45. Arnold DH and Johnston A. Motion-induced spatial conflict. Nature. 2003 Sep 11;425(6954):181-4. DOI:10.1038/nature01955 | PubMed ID:12968181 | HubMed [ArnoldJohnston03]
  46. Carlson TA, Schrater P, and He S. Floating square illusion: perceptual uncoupling of static and dynamic objects in motion. J Vis. 2006 Feb 13;6(2):132-44. DOI:10.1167/6.2.4 | PubMed ID:16522140 | HubMed [CarlsonSchraterHe06]
  47. Durant S and Zanker JM. The movement of motion-defined contours can bias perceived position. Biol Lett. 2009 Apr 23;5(2):270-3. DOI:10.1098/rsbl.2008.0622 | PubMed ID:19126535 | HubMed [DurantZanker09]
  48. [Moradi]
  49. White JM, Levi DM, and Aitsebaomo AP. Spatial localization without visual references. Vision Res. 1992 Mar;32(3):513-26. DOI:10.1016/0042-6989(92)90243-c | PubMed ID:1604838 | HubMed [WhiteLeviAitsebaomo1992]
All Medline abstracts: PubMed | HubMed

Biphasic Neuron Extrap
A-V flash lag
foveo fugal/petal biases

Temporal variability might arise from:

  1. Position shifting that increases with velocity, with constant noise added to velocity
  2. Uncertainty in *when* the judgment was supposed to be made
  3. For any effects caused by afferent latency (Hazelhoff?), variability in latency

deValois stands out as only temporal bias with spatial variability. Then why doesn't Cai and Frohlich have temporal bias? Only easy explanation would be the possibly-greater blur of the deValois stimuli, so we have to check that. Increasing eccentricity would also increase the spatial uncertainty[48] perhaps allowing temporal to manifest


  • The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
  • Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
  • To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.