Holcombe:PositionAndMotion

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
Current revision (22:23, 15 August 2010) (view source)
 
(21 intermediate revisions not shown.)
Line 1: Line 1:
{{Template:Holcombe}}
{{Template:Holcombe}}
-
 
-
&bull; [[Holcombe:BiphasicSim|Biphasic Neuron Extrap]]<br>
 
-
&bull; [[Holcombe:AVflashLag|A-V flash lag]]<br>
 
-
&bull; [[Holcombe:Fugalpetal|foveo fugal/petal biases]]<br>
 
-
==Following on from <cite>LinaresHolcombe2008neurophys</cite>==
 
-
* The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
 
-
* Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
 
-
* To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.
 
{| border="1" cellspacing="0" cellpadding="3" align="center"
{| border="1" cellspacing="0" cellpadding="3" align="center"
! Phenomenon
! Phenomenon
 +
! interval before transient
 +
! interval after transient
! Spatial Bias
! Spatial Bias
-
! Temporal Bias- increase w/speed
+
! Temporal Bias- increase w/speed, or temporal freq tuned
! Spatial Variab
! Spatial Variab
! Temporal Variab
! Temporal Variab
! Foveo
! Foveo
! attn effect
! attn effect
-
! vectors sum
+
! vectors sum /IOC
! land - marks
! land - marks
! monotonic inc w/ motion dur
! monotonic inc w/ motion dur
-
! n. transient most importnt
 
! awareness necess
! awareness necess
! feature space
! feature space
! affects eyemove
! affects eyemove
 +
! retinal motn sufficnt
|-  
|-  
| Flash-lag
| Flash-lag
 +
|
 +
| yes
| some
| some
| little
| little
Line 33: Line 29:
| petal<cite>LinaresHolcombe2008neurophys</cite>,<cite>KanaiShethShimojo04</cite>
| petal<cite>LinaresHolcombe2008neurophys</cite>,<cite>KanaiShethShimojo04</cite>
| ?
| ?
-
| yes
+
| yes<cite>EaglemanSejnowski07</cite>
| less spatial σ?
| less spatial σ?
| yes?
| yes?
-
| yes
 
|
|
| yes<cite>ShethNijhawanShimojo</cite>
| yes<cite>ShethNijhawanShimojo</cite>
|-
|-
|Cai<cite>CaiSchlag01</cite>
|Cai<cite>CaiSchlag01</cite>
 +
|
 +
|
|.5deg
|.5deg
|0<cite>LinaresHolcombe2008xx,Gauch08</cite>
|0<cite>LinaresHolcombe2008xx,Gauch08</cite>
Line 50: Line 47:
|
|
|
|
-
|??
 
|-
|-
|Hazelhoff,<cite>HazelhoffWiersma1924</cite>
|Hazelhoff,<cite>HazelhoffWiersma1924</cite>
 +
|
 +
|yes<cite>RotmanBS04</cite>
|0
|0
|large
|large
Line 62: Line 60:
|
|
|
|
-
|yes<cite>RotmanBS04</cite>
 
|-
|-
-
|Whitney&Cav
+
|Drifting motion's effect on flash<cite>WhitneyCavanagh00</cite>
 +
|~80ms before matters, dunno greater<cite>RoachMcGraw09</cite>
 +
|80ms later matters but not 300<cite>RoachMcGraw09</cite>
|signif
|signif
|~0<cite>WhitneyCavanagh02</cite>,<cite>WhitneyCavanagh00</cite>
|~0<cite>WhitneyCavanagh02</cite>,<cite>WhitneyCavanagh00</cite>
Line 74: Line 73:
|
|
|
|
-
| ?
 
|
|
|
|
|not early<cite>deSperati08</cite>
|not early<cite>deSperati08</cite>
 +
|-
 +
|Translating object's effect on flash<cite>YilmazEtAl07</cite>
 +
|
 +
|yes<cite>DurantJohnston</cite><cite>WatanabeSatoShimojo</cite>
 +
|
 +
|0<cite>DurantJohnston</cite>,not much<cite>WatanabeSatoShimojo</cite>
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
|-
|-
|Frohlich
|Frohlich
 +
|
 +
|N/A
|.5deg fugal:1.5deg,petal:0<cite>Musseler98</cite>
|.5deg fugal:1.5deg,petal:0<cite>Musseler98</cite>
|0<cite>LinaresHolcombe2008xx</cite>,<27ms<cite>MusselerKerzel04</cite> fugal:10ms,petal:15ms<cite>Musseler98</cite>,0-5ms<cite>Kerzel02</cite>,2-8ms<cite>MusselerNeumann92</cite>,79ms<cite>WhitneyCavanagh02</cite>
|0<cite>LinaresHolcombe2008xx</cite>,<27ms<cite>MusselerKerzel04</cite> fugal:10ms,petal:15ms<cite>Musseler98</cite>,0-5ms<cite>Kerzel02</cite>,2-8ms<cite>MusselerNeumann92</cite>,79ms<cite>WhitneyCavanagh02</cite>
Line 90: Line 103:
|
|
|
|
-
|N/A
+
|no<cite>ArnoldThompsonJohnston</cite>
|-
|-
|Offset localization
|Offset localization
 +
|
 +
|
|small
|small
|flash-terminated saturated at slow<cite>KanaiShethShimojo04</cite>,offset of blurred peaked at slow<cite>FuShenDan01</cite>  
|flash-terminated saturated at slow<cite>KanaiShethShimojo04</cite>,offset of blurred peaked at slow<cite>FuShenDan01</cite>  
Line 100: Line 115:
|-
|-
|onset-repuls
|onset-repuls
 +
|
 +
|
|
|
|<=15ms<cite>Thornton02</cite>,<cite>HubbardMotes</cite>
|<=15ms<cite>Thornton02</cite>,<cite>HubbardMotes</cite>
Line 105: Line 122:
|repr momentum
|repr momentum
|
|
 +
|
 +
|illusion only happens with eye move?<cite>Kerzel05</cite>
|33ms<cite>HubbardMotes</cite>
|33ms<cite>HubbardMotes</cite>
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
|-
|-
|deValois
|deValois
|
|
-
|large
+
|
 +
|
 +
|large<cite>ChungEtAl07</cite><cite>MatherPavan2009</cite> Tuned to temporal freq <cite>BresslerWhitney06</cite><cite>deValois91</cite>
|miniscule
|miniscule
|miniscule
|miniscule
|fugal<cite>LinaresHolcombe2008neurophys</cite>
|fugal<cite>LinaresHolcombe2008neurophys</cite>
|
|
-
|
+
|yes<cite>MatherPavan2009</cite>,<cite>RiderMcOwanJohnston09</cite>
|
|
|NO
|NO
 +
|No<cite>Whitney05</cite>
|-
|-
|kinetic edge<cite>RamaAnstis90</cite>
|kinetic edge<cite>RamaAnstis90</cite>
 +
|
 +
|
|
|
|read<cite>FanHarris08</cite>
|read<cite>FanHarris08</cite>
Line 136: Line 169:
|-
|-
|Motion adapt
|Motion adapt
 +
|
 +
|
|
|
|saturat at 5degpersec/Hz<cite>Snowden98</cite>
|saturat at 5degpersec/Hz<cite>Snowden98</cite>
Line 168: Line 203:
|
|
|Yes<cite>PostEtAl89</cite>
|Yes<cite>PostEtAl89</cite>
 +
|-
 +
|10Hz jitter<cite>ArnoldJohnston03</cite>
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|yes
 +
|-
 +
|Floating square<cite>CarlsonSchraterHe06</cite>
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|no
|-
|-
|timed buttonpress
|timed buttonpress
|}
|}
-
Temporal variability might arise from:
+
Miscellaneous
-
#Position shifting that increases with velocity, with constant noise added to velocity
+
-
#Uncertainty in *when* the judgment was supposed to be made
+
-
#For any effects caused by afferent latency (Hazelhoff?), variability in latency
+
-
deValois stands out as only temporal bias with spatial variability. Then why doesn't Cai and Frohlich have temporal bias? Only easy explanation would be the possibly-greater blur of the deValois stimuli, so we have to check that. Increasing eccentricity would also increase the spatial uncertainty<cite>WhiteLeviAitsebaomo1992</cite> perhaps allowing temporal to manifest
+
motion-defined motion contours also are perceived shifted<cite>DurantZanker09</cite>
===Refs===
===Refs===
<biblio>
<biblio>
 +
#ArnoldJohnston03 pmid=12968181
#CaiSchlag01 Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127
#CaiSchlag01 Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127
 +
#DurantZanker09 pmid=19126535
 +
#EaglemanSejnowski07 pmid=17461687
 +
#ChungEtAl07 pmid=17190608
#FanHarris08 pmid=18824016
#FanHarris08 pmid=18824016
#RamaAnstis90 pmid=2102995
#RamaAnstis90 pmid=2102995
#FuShenDan01 pmid=11588202
#FuShenDan01 pmid=11588202
 +
#ArnoldThompsonJohnston pmid=17643464
#KanaiShethShimojo04 pmid=15358076
#KanaiShethShimojo04 pmid=15358076
#CarbonePomplun07 pmid=16645880
#CarbonePomplun07 pmid=16645880
 +
#DurantJohnston pmid=14659962
#WhitneyCavanagh02 Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of  
#WhitneyCavanagh02 Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of  
moving stimuli. Visual Cognition 9:139–152.
moving stimuli. Visual Cognition 9:139–152.
#WhitneyCavanagh00 pmid=10966628
#WhitneyCavanagh00 pmid=10966628
#HazelhoffWiersma1924 Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188
#HazelhoffWiersma1924 Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188
 +
#Kerzel05 Representation Momentum Beyond Internalized Physics. Current Directions in Psychological Science. 2005; 14:4
#MusselerKerzel04 pmid=15208006
#MusselerKerzel04 pmid=15208006
#HubbardMotes pmid=11747866
#HubbardMotes pmid=11747866
 +
#deValois91 pmid=1949630
#LinaresHolcombe2008neurophys pmid=18753324
#LinaresHolcombe2008neurophys pmid=18753324
#LinaresHolcombe2008xx Linares D, Holcombe AO. Unpublished results. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability.
#LinaresHolcombe2008xx Linares D, Holcombe AO. Unpublished results. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability.
Line 200: Line 274:
#Thornton02 pmid=11991576
#Thornton02 pmid=11991576
#Musseler98 pmid=9628999  
#Musseler98 pmid=9628999  
 +
#RiderMcOwanJohnston09 pmid=20055541
#MusselerNeumann92 pmid=1494610
#MusselerNeumann92 pmid=1494610
 +
#CarlsonSchraterHe06 pmid=16522140
#Kerzel02 pmid=12136384
#Kerzel02 pmid=12136384
#KerzelMusseler02 pmid=11809472  
#KerzelMusseler02 pmid=11809472  
-
#Kirschfeld98 pmid=10746140  
+
#Kirschfeld98 pmid=10746140
 +
#MatherPavan2009 pmid=19761786
#PostEtAl89 pmid=2726403
#PostEtAl89 pmid=2726403
#RamaInada1985 pmid=3940050
#RamaInada1985 pmid=3940050
 +
#RoachMcGraw09 pmid=19812288
#Snowden98 pmid=9843685
#Snowden98 pmid=9843685
#Gauch08 pmid=18717394
#Gauch08 pmid=18717394
#RotmanBS04 pmid=15330702
#RotmanBS04 pmid=15330702
 +
#YilmazEtAl07 pmid=17697692
#NishidaJohnston99 pmid=10050853
#NishidaJohnston99 pmid=10050853
#LiKhuuHayes09 pmid=18831614
#LiKhuuHayes09 pmid=18831614
#ShethNijhawanShimojo pmid=10769390
#ShethNijhawanShimojo pmid=10769390
#Holcombe09  Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653
#Holcombe09  Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653
 +
#WatanabeSatoShimojo pmid=17184808
#Whitney06 pmid=17154779
#Whitney06 pmid=17154779
 +
#Whitney05 pmid=15886084
 +
#BresslerWhitney06 pmid=16359721
</biblio>
</biblio>
 +
 +
&bull; [[Holcombe:BiphasicSim|Biphasic Neuron Extrap]]<br>
 +
&bull; [[Holcombe:AVflashLag|A-V flash lag]]<br>
 +
&bull; [[Holcombe:Fugalpetal|foveo fugal/petal biases]]<br>
 +
 +
Temporal variability might arise from:
 +
#Position shifting that increases with velocity, with constant noise added to velocity
 +
#Uncertainty in *when* the judgment was supposed to be made
 +
#For any effects caused by afferent latency (Hazelhoff?), variability in latency
 +
 +
deValois stands out as only temporal bias with spatial variability. Then why doesn't Cai and Frohlich have temporal bias? Only easy explanation would be the possibly-greater blur of the deValois stimuli, so we have to check that. Increasing eccentricity would also increase the spatial uncertainty<cite>WhiteLeviAitsebaomo1992</cite> perhaps allowing temporal to manifest
 +
 +
 +
* The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
 +
* Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
 +
* To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.

Current revision

Members

Alex Holcombe
Sarah McIntyre
Fahed Jbarah
• Shih-Yu Lo
• Patrick Goodbourn
Lizzy Nguyen
Alumni

Projects

Testing Booth Calendar
Temporal Review
Vernier related
Binding MOT lags
Light and latency
Position and motion


Technical

Skills Checklist
Python Programming
Psychopy/VisionEgg Installation Notes
R analysis,plot,stats
Statistics
Buttonbox
Verifying timing
Programming Cheat Sheets



Phenomenon interval before transient interval after transient Spatial Bias Temporal Bias- increase w/speed, or temporal freq tuned Spatial Variab Temporal Variab Foveo attn effect vectors sum /IOC land - marks monotonic inc w/ motion dur awareness necess feature space affects eyemove retinal motn sufficnt
Flash-lag yes some little 0 80ms petal[1],[2]  ? yes[3] less spatial σ? yes? yes[4]
Cai[5] .5deg 0[6, 7] ? 0 fugal[6]
Hazelhoff,[8] yes[9] 0 large ?? discrepant Ss[6] ?? ?? ??
Drifting motion's effect on flash[10] ~80ms before matters, dunno greater[11] 80ms later matters but not 300[11] signif ~0[12],[10] ?? betting0 ?? large not early[13]
Translating object's effect on flash[14] yes[15][16] 0[15],not much[16]
Frohlich N/A .5deg fugal:1.5deg,petal:0[17] 0[6],<27ms[18] fugal:10ms,petal:15ms[17],0-5ms[19],2-8ms[20],79ms[12]

39ms[21],100ms[22]

? 0 fugal[17, 23],0[6] large no[24]
Offset localization small flash-terminated saturated at slow[2],offset of blurred peaked at slow[25]
onset-repuls <=15ms[26],[27]
repr momentum illusion only happens with eye move?[28] 33ms[27]
deValois large[29][30] Tuned to temporal freq [31][32] miniscule miniscule fugal[1] yes[30],[33] NO No[34]
kinetic edge[35] read[36] [36] [36] petal[36]
bg motion->IC[37] not much? only 2 speeds tested[37]
Motion capture[38]
Motion adapt saturat at 5degpersec/Hz[39] ~0[40] ~0[40] fugal Yes[40] No[41]
binding 0[42]
Tandem[20]
induced motion 0? Yes[43]
10Hz jitter[44] yes
Floating square[45] no
timed buttonpress

Miscellaneous

motion-defined motion contours also are perceived shifted[46]

Refs

  1. Linares D and Holcombe AO. . pmid:18753324. PubMed HubMed [LinaresHolcombe2008neurophys]
  2. Kanai R, Sheth BR, and Shimojo S. . pmid:15358076. PubMed HubMed [KanaiShethShimojo04]
  3. Kanai R, Sheth BR, and Shimojo S. . pmid:15358076. PubMed HubMed [KanaiShethShimojo04]
  4. Eagleman DM and Sejnowski TJ. . pmid:17461687. PubMed HubMed [EaglemanSejnowski07]
  5. Sheth BR, Nijhawan R, and Shimojo S. . pmid:10769390. PubMed HubMed [ShethNijhawanShimojo]
  6. Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127 [CaiSchlag01]
  7. Linares D, Holcombe AO. Unpublished results. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability. [LinaresHolcombe2008xx]
  8. Gauch A and Kerzel D. . pmid:18717394. PubMed HubMed [Gauch08]
  9. Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188 [HazelhoffWiersma1924]
  10. Rotman G, Brenner E, and Smeets JB. . pmid:15330702. PubMed HubMed [RotmanBS04]
  11. Whitney D and Cavanagh P. . pmid:10966628. PubMed HubMed [WhitneyCavanagh00]
  12. Roach NW and McGraw PV. . pmid:19812288. PubMed HubMed [RoachMcGraw09]
  13. Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of moving stimuli. Visual Cognition 9:139–152. [WhitneyCavanagh02]
  14. de'Sperati C and Baud-Bovy G. . pmid:18434509. PubMed HubMed [deSperati08]
  15. Yilmaz O, Tripathy SP, Patel SS, and Ogmen H. . pmid:17697692. PubMed HubMed [YilmazEtAl07]
  16. Durant S and Johnston A. . pmid:14659962. PubMed HubMed [DurantJohnston]
  17. Tsui SY, Khuu SK, and Hayes A. . pmid:17184808. PubMed HubMed [WatanabeSatoShimojo]
  18. Müsseler J and Aschersleben G. . pmid:9628999. PubMed HubMed [Musseler98]
  19. Müsseler J and Kerzel D. . pmid:15208006. PubMed HubMed [MusselerKerzel04]
  20. Kerzel D. . pmid:12136384. PubMed HubMed [Kerzel02]
  21. Müsseler J and Neumann O. . pmid:1494610. PubMed HubMed [MusselerNeumann92]
  22. Kerzel D and Müsseler J. . pmid:11809472. PubMed HubMed [KerzelMusseler02]
  23. Kirschfeld K and Kammer T. . pmid:10746140. PubMed HubMed [Kirschfeld98]
  24. Carbone E and Pomplun M. . pmid:16645880. PubMed HubMed [CarbonePomplun07]
  25. Arnold DH, Thompson M, and Johnston A. . pmid:17643464. PubMed HubMed [ArnoldThompsonJohnston]
  26. Fu YX, Shen Y, and Dan Y. . pmid:11588202. PubMed HubMed [FuShenDan01]
  27. Thornton IM. . pmid:11991576. PubMed HubMed [Thornton02]
  28. Hubbard TL and Motes MA. . pmid:11747866. PubMed HubMed [HubbardMotes]
  29. Representation Momentum Beyond Internalized Physics. Current Directions in Psychological Science. 2005; 14:4 [Kerzel05]
  30. Chung ST, Patel SS, Bedell HE, and Yilmaz O. . pmid:17190608. PubMed HubMed [ChungEtAl07]
  31. Mather G and Pavan A. . pmid:19761786. PubMed HubMed [MatherPavan2009]
  32. Bressler DW and Whitney D. . pmid:16359721. PubMed HubMed [BresslerWhitney06]
  33. De Valois RL and De Valois KK. . pmid:1949630. PubMed HubMed [deValois91]
  34. Rider AT, McOwan PW, and Johnston A. . pmid:20055541. PubMed HubMed [RiderMcOwanJohnston09]
  35. Whitney D. . pmid:15886084. PubMed HubMed [Whitney05]
  36. Ramachandran VS and Anstis SM. . pmid:2102995. PubMed HubMed [RamaAnstis90]
  37. Fan Z and Harris J. . pmid:18824016. PubMed HubMed [FanHarris08]
  38. Lee TC, Khuu SK, Li W, and Hayes A. . pmid:18831614. PubMed HubMed [LiKhuuHayes09]
  39. Ramachandran VS and Inada V. . pmid:3940050. PubMed HubMed [RamaInada1985]
  40. Snowden RJ. . pmid:9843685. PubMed HubMed [Snowden98]
  41. Nishida S and Johnston A. . pmid:10050853. PubMed HubMed [NishidaJohnston99]
  42. Whitney D. . pmid:17154779. PubMed HubMed [Whitney06]
  43. Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653 [Holcombe09]
  44. Post RB, Chi D, Heckmann T, and Chaderjian M. . pmid:2726403. PubMed HubMed [PostEtAl89]
  45. Arnold DH and Johnston A. . pmid:12968181. PubMed HubMed [ArnoldJohnston03]
  46. Carlson TA, Schrater P, and He S. . pmid:16522140. PubMed HubMed [CarlsonSchraterHe06]
  47. Durant S and Zanker JM. . pmid:19126535. PubMed HubMed [DurantZanker09]
  48. http://www.klab.caltech.edu/~farshadm/demo/ [Moradi]
  49. White JM, Levi DM, and Aitsebaomo AP. . pmid:1604838. PubMed HubMed [WhiteLeviAitsebaomo1992]
All Medline abstracts: PubMed HubMed

Biphasic Neuron Extrap
A-V flash lag
foveo fugal/petal biases

Temporal variability might arise from:

  1. Position shifting that increases with velocity, with constant noise added to velocity
  2. Uncertainty in *when* the judgment was supposed to be made
  3. For any effects caused by afferent latency (Hazelhoff?), variability in latency

deValois stands out as only temporal bias with spatial variability. Then why doesn't Cai and Frohlich have temporal bias? Only easy explanation would be the possibly-greater blur of the deValois stimuli, so we have to check that. Increasing eccentricity would also increase the spatial uncertainty[48] perhaps allowing temporal to manifest


  • The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
  • Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
  • To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.
Views
Personal tools