Holcombe:PositionAndMotion: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
 
(122 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Template:Holcombe}}
{{Template:Holcombe}}
&bull; [[Holcombe:BiphasicSim|Biphasic Neuron Extrap]]<br>
&bull; [[Holcombe:AVflashLag|A-V flash lag]]<br>
&bull; [[Holcombe:Fugalpetal|foveo fugal/petal biases]]<br>
==Following on from <cite>LinaresHolcombe2008neurophys</cite>==




{| border="1" cellspacing="0" cellpadding="3" align="center"
{| border="1" cellspacing="0" cellpadding="3" align="center"
! Phenomenon
! Phenomenon
! interval before transient
! interval before transient (predictn)
! interval after transient
! interval after transient (postdictn)
! Spatial Bias
! Temporal Bias- increase w/speed, or temporal freq tuned
! Temporal Bias- increase w/speed
! Spatial Variab
! Spatial Variab
! Temporal Variab
! Temporal Variab
! Foveo
! Foveo
! attn effect
! attn effect
! vectors sum /IOC
! land - marks
! monotonic inc w/ motion dur
! awareness necess
! awareness necess
! vector sum /IOC, hi-level motion
! landmarks
! Effect of motion dur
! feature space
! feature space
! affects eyemove
! affects eyemove
! retinal motn sufficnt
! retinal motn sufficnt
! Spatial asymm (behind/in front of motion)
|-  
|-  
| Flash-lag
| Flash-lag
|
|
| yes
| yes
| some
| substantial in some participants and negative in some, but linear, implicating asynchrony<cite>LinaresHolcombeWhite2009</cite> (see <cite>Wojtach2008</cite> for more refs). Except hi-speed testing found logarithmic<cite>Wojtach2008</cite>
| little
| 0  
| 0  
| 80ms
| 80ms
| petal<cite>LinaresHolcombe2008neurophys</cite>,<cite>KanaiShethShimojo04</cite>
| petal<cite>LinaresHolcombe2008neurophys</cite>,<cite>KanaiShethShimojo04</cite>
| ?
| ?
|
| yes<cite>EaglemanSejnowski07</cite>
| yes<cite>EaglemanSejnowski07</cite>
| less spatial σ?
| less spatial σ?
| yes?
| Increase<cite>LinaresLopezJohnston07</cite>, Decrease<cite>VrevenVerghese</cite>
|
| yes<cite>ShethNijhawanShimojo</cite>
| yes<cite>ShethNijhawanShimojo</cite>
|-
|-
|Cai<cite>CaiSchlag01</cite>
|Flashes during smooth pursuit<cite>HazelhoffWiersma1924</cite>(in extrapolation direction), eliminated by longer flash creating contrary motion
|
|
|.5deg
|0<cite>LinaresHolcombe2008xx,Gauch08</cite>
|?
|0
|fugal<cite>LinaresHolcombe2008xx</cite>
|
|
|
|
|-
|Hazelhoff,<cite>HazelhoffWiersma1924</cite>
|
|
|yes<cite>RotmanBS04</cite>
|yes<cite>RotmanBS04</cite> 200 ms<cite>RotmanBS05</cite>
|0
|large
|large
|??
|??
Line 62: Line 42:
|??
|??
|??
|??
|
|??
|??
|
|reduces<cite>BrennerSV01</cite>
|
|
|-
|-
|Drifting motion's effect on flash<cite>WhitneyCavanagh00</cite>
|Motion on nearby flash (flash-drag)<cite>WhitneyCavanagh00</cite>
|~80ms before matters, dunno greater<cite>RoachMcGraw09</cite>
|~0<cite>RoachMcGraw09,WhitneyCavanagh00,MuraiMurakami16</cite>
|80ms later matters but not 300<cite>RoachMcGraw09</cite>
|80-200ms later matters<cite>RoachMcGraw09,WhitneyCavanagh00,MuraiMurakami16</cite>, strongest for moving grating onsetting 100ms later<cite>MuraiMurakami16</cite> but peaks at reversal time in reversal paradigm<cite>RoachMcGraw09,WhitneyCavanagh00</cite>
|signif
|~0<cite>WhitneyCavanagh02,WhitneyCavanagh00</cite>
|~0<cite>WhitneyCavanagh02</cite>,<cite>WhitneyCavanagh00</cite>
|??
|??
|betting0
|betting0
|??
|??
|large
|Pre-attentive<cite>Fukiage11</cite> but attending to a motion determines direction<cite>TseEtAl11</cite>
|
|
|
|
|
|
|
|not early<cite>deSperati08</cite>
|
|
|
|
|not early<cite>deSperati08</cite>
|Large. Big ahead of tracked bars.<cite>ShimCav05</cite>
|-
|-
|Translating object's effect on flash
|Flash attracted toward position of motion<cite>YilmazEtAl07</cite>, and endpoint of AM<cite>ShimCav06</cite>
|
|
|yes<cite>DurantJohnston</cite><cite>WatanabeSatoShimojo</cite>
|yes<cite>DurantJohnston</cite><cite>WatanabeSatoShimojo</cite>
|0<cite>DurantJohnston</cite>,not much<cite>WatanabeSatoShimojo</cite>
|
|
|
|
|
|
|
|
|-
|Offset localizatn lag
|
|
|offset of blurred peaked at slow in <cite>FuShenDan01</cite>, but high-speed LINEAR (or log?) to 70degpersec,implying 24ms<cite>NakajimaSakaguchi16</cite> lag
|
|
|
|-
|Offset localizatn extrap / representational momentum ([https://docs.google.com/document/d/1g5Q2mKbsK-W-iHQ9z3Wz5u-hcf33zjml5f9ji9Hb2XA Josh review])
|
|illusion bigger with eye move or pointing<cite>Kerzel05</cite>? With fixatn<cite>HayesFreyd02</cite>
;33ms<cite>HubbardMotes</cite>
|0 - increases with speed (with pointing response but not same/different judgment) but not enough for constant time<cite>KerzelGegenfurtner03</cite>
|
|
|
|Bigger with both split attention<cite>HayesFreyd02</cite><cite>HayesFreyd95</cite> and secondary task<cite>HayesFreyd02</cite>
|
|
|
|
|
|-
|Offset localizatn with flash (flash-terminated)
| Mixed evidence, depends on uncertainty?<cite>KanaiShethShimojo04</cite>
|
| flash-terminated saturated at slow<cite>KanaiShethShimojo04</cite>
|-
|[https://twitter.com/ceptional/status/1204116417429131264 Twinkle goes] (Offset localization transient-masked)
|<<80ms?<cite>NakaHolcombe2021</cite>
|~50ms<cite>NakaHolcombe2021</cite>
|LINEAR in <cite>NishidaJohnston99</cite> implying 13 ms with 100ms fading time. LINEAR in <cite>NakaHolcombe2021</cite> implying 50 ms, but saturation over 1.2rps. <cite>Wilson2021</cite> found much smaller effect of speed
|
|
|
|
|
|
|
|Larger with shorter duration<cite>Wilson2021</cite>
|-
|Shrinkage of motion paths (related to offset localization)
|
|
|linear but they test only 3 speeds, max 6.5 deg/sec or .74 rev/sec <cite>SinicoEtAl09</cite>
|
|
|
|large, based on cloud test<cite>CavanaghAnstis13</cite>
|-
|Flash-grab<cite>CavanaghAnstis13</cite>(putatively a way to measure the shrinkage effect)
|~0<cite>CavanaghAnstis13</cite>, 12%<cite>Blom19</cite>, 25-50%<cite>Takao22</cite>
|Strongest when flash occurs at time of reversal, gradually declines as reversal occurs later until ~200 ms<cite>CavanaghAnstis13</cite>, whereas flash-drag stays substantial for up to 5s after reversal<cite>RoachMcGraw09</cite>
|Linear (really, decelerating?) up to .75rps<cite>CavanaghAnstis13</cite> (could continue faster if faster monitor?), suggesting 50ms. To be explained by temporal averaging, 100ms
|
|
|
|0<cite>DurantJohnston</cite>,not much<cite>WatanabeSatoShimojo</cite>
|
|
|
|
|
|
|mostly component, partly global motion<cite>KohlerCavanaghTse15</cite>
|
|
|
|
Line 95: Line 142:
|
|
|-
|-
|Frohlich
|Flash-jump<cite>CaiSchlag01,EaglemanSejnowski07</cite> feature change in apparent motion.<cite>CavanaghAnstis13</cite>
|
|
|N/A
|Never tested
|.5deg fugal:1.5deg,petal:0<cite>Musseler98</cite>
|0<cite>LinaresHolcombe2008xx,Gauch08</cite>
|0<cite>LinaresHolcombe2008xx</cite>,<27ms<cite>MusselerKerzel04</cite> fugal:10ms,petal:15ms<cite>Musseler98</cite>,0-5ms<cite>Kerzel02</cite>,2-8ms<cite>MusselerNeumann92</cite>,79ms<cite>WhitneyCavanagh02</cite>
39ms<cite>KerzelMusseler02</cite>,100ms<cite>Kirschfeld98</cite>
|?
|?
|0
|0?<cite>LinaresHolcombe2008xx</cite>
|fugal<cite>CarbonePomplun07,Musseler98</cite>,0<cite>LinaresHolcombe2008xx</cite>
|fugal<cite>LinaresHolcombe2008xx</cite>
|large
|
|
|
|yes<cite>EaglemanSejnowski07</cite>
|
|
|
|
|no<cite>ArnoldThompsonJohnston</cite>
|-
|-
|Offset localization
|Frame effect<cite>OzkanAnstis21</cite>
|
|
|0<cite>OzkanAnstis21</cite>
|
|
|
|
|
|small
|flash-terminated saturated at slow<cite>KanaiShethShimojo04</cite>,offset of blurred peaked at slow<cite>FuShenDan01</cite>
|
|
|
|
|
|
|reduces
|-
|-
|onset-repuls
|Frohlich (whether it or onset repulsion found depends on task<cite>KreegAllik03</cite><cite>Kerzel02</cite>)
|N/A
|
|0<cite>LinaresHolcombe2008xx</cite>,<27ms<cite>MusselerKerzel04</cite> fugal:10ms,petal:15ms<cite>Musseler98</cite>,0-5ms<cite>Kerzel02</cite>,2-8ms<cite>MusselerNeumann92</cite>,79ms<cite>WhitneyCavanagh02</cite>
39ms<cite>KerzelMusseler02</cite>,100ms<cite>Kirschfeld98</cite>,18ms but nonlinear<cite>NakajimaSakaguchi16</cite>
|?
|0
||.5deg fugal:1.5deg, petal:0<cite>Musseler98</cite>
<cite>CarbonePomplun07</cite>,0<cite>LinaresHolcombe2008xx</cite>
|yes but didn't control for possible subject bias toward cue, and cue in other location didn't increase effect<cite>Musseler98</cite>
|no<cite>ArnoldThompsonJohnston</cite>
|
|
|
|
|
|
|<=15ms<cite>Thornton02</cite>,<cite>HubbardMotes</cite>
|-
|-
|repr momentum
|onset-repuls
|
|
|
|
|<=15ms<cite>Thornton02</cite>,<cite>HubbardMotes</cite>
|-
|Facilitation ahead of moving object<cite>ArnoldThompsonJohnston</cite>
|
|
|33ms<cite>HubbardMotes</cite>
|-
|-
|deValois
|Double-drift / curveball
|Accumulates for almost 1 s
|
|
|-
|MIPS blurred edges<cite>deValois91</cite>
|
|
|
|
|large<cite>ChungEtAl07</cite><cite>MatherPavan2009</cite>
|large<cite>ChungEtAl07</cite><cite>MatherPavan2009</cite> Tuned to temporal freq <cite>BresslerWhitney06</cite><cite>deValois91</cite>
|miniscule
|miniscule
|miniscule
|miniscule
|fugal<cite>LinaresHolcombe2008neurophys</cite>
|fugal<cite>LinaresHolcombe2008neurophys</cite>
|
|
|No<cite>Whitney05</cite>
|yes<cite>MatherPavan2009</cite>,<cite>RiderMcOwanJohnston09</cite>
|yes<cite>MatherPavan2009</cite>,<cite>RiderMcOwanJohnston09</cite>
|
|No?
|NO
|Saturating at 180ms<cite>ArnoldThompsonJohnston</cite>; dipping 60->90ms<cite>ChungEtAl07</cite>
|No<cite>Whitney05</cite>
|-
|-
|kinetic edge<cite>RamaAnstis90</cite>
|MIPS sharp edges<cite>RamaAnstis90</cite>
|
|
|
|
|
Line 165: Line 226:
|-
|-
|Motion adapt
|Motion adapt
|
|
|
|
|
Line 172: Line 232:
|~0<cite>NishidaJohnston99</cite>
|~0<cite>NishidaJohnston99</cite>
|fugal
|fugal
|
|
|
|
|
|
|
|Yes<cite>NishidaJohnston99</cite>
|Yes<cite>NishidaJohnston99</cite>
|
|No<cite>Whitney06</cite>
|No<cite>Whitney06</cite>
|-
|-
|binding
|binding
|
|
|
|
|
Line 201: Line 260:
|-
|-
|10Hz jitter<cite>ArnoldJohnston03</cite>
|10Hz jitter<cite>ArnoldJohnston03</cite>
|
|
|
|
|
Line 221: Line 279:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|no
|-
|Eyeblink extrapolation
|
|yes
|no <cite>MausEtAl20</cite>
|
|
|
|
Line 232: Line 306:
|
|
|
|
|no
|-
|-
|timed buttonpress
|timed buttonpress
|-
|reverse rep-mo <cite>RoulstonSelfZeki2006</cite>
|}
|}
Temporal variability might arise from:
#Position shifting that increases with velocity, with constant noise added to velocity
#Uncertainty in *when* the judgment was supposed to be made
#For any effects caused by afferent latency (Hazelhoff?), variability in latency


deValois stands out as only temporal bias with spatial variability. Then why doesn't Cai and Frohlich have temporal bias? Only easy explanation would be the possibly-greater blur of the deValois stimuli, so we have to check that. Increasing eccentricity would also increase the spatial uncertainty<cite>WhiteLeviAitsebaomo1992</cite> perhaps allowing temporal to manifest
 
reverse rep-mo: "These displacements are in the direction opposite to displacements typically obtained in studies on the flash-lag effect and in studies on representational momentum, and the reasons for these differences are not clear. One possible explanation involves the time course of displacement. Freyd and Johnson (1987) reported forward displacement peaked after a few hundred milliseconds and then decreased, and they attributed this pattern to two distinct processes: an initial forward extrapolation process that displaced represented location in the direction of target motion (representational momentum) and a subsequent memory averaging process that displaced represented location toward an average of the stimulus locations. Depending upon the latency of judgment in Roulston et al. (which was not reported), the apparent reverse-repmo might reflect this subsequent memory averaging. This remains an issue for further research." Hubbard 2013
 
====Miscellaneous====
 
Flash-jump effect, with eight-bar sequence, results in activity for the flash being shifted in V4<cite>Sundberg2006</cite>
 
motion-defined motion contours also are perceived shifted<cite>DurantZanker09</cite>
 
*Importance of motion reversal or sudden onset: Cavanagh & Anstis (2013): The flash-grab effect is strongest when the flash occurs at the moment of reversal. When it occurred earlier or later, the effect dropped to quite small values. There is a large effect that extends 200 ms before and after the reversal. This fairly symmetrical effect contrasts to the asymmetrical and longer lasting effect seen for the flash drag stimulus (e.g., Whitney & Cavanagh, 2000a). With their stimulus, the effect also began 200-300 ms before the reversal, reaching a maximum at the time of the reversal, but then remained at that level for 2 s. Roach and McGraw (2009) found the flash drag effect was maximum at the time of a motion onset and decreased within a second to about half of its maximum, maintaining that level for as long as 5 s.
 
*Remapping or object prediction/postdiction: If it's for saccadic or head-movement remapping, would expect it would require large-field motion to be triggered, as opposed to motion of a small object being sufficient.
 
* Effect of speed and Wojtach et al. results that above 15 deg per second it starts to saturate, for a max of 2 dva!
It is fascinating that the FLE saturated at just 2 deg of visual angle! Is the authors’ explanation correct? Supporting evidence could come from other studies that would utilize a speed prior. At first I thought it might be an artifact of the researchers using linear trajectory and a small field of view (15 deg), but it certainly isn’t because of truncation by that 15 deg field of view. Although it could impair the initial percept, should be replicated with circular trajectories. Individual data is not shown , the paper just says similarity justified combining the individual data. I have not compared and contrasted with Linares Holcombe & White.
 
====How to avoid contamination by representational momentum====
 
"The forward shift and the reversal of the shift with time (memory averaging) were absent when both factors were randomized. Thus, the forward shift with implied motion is restricted to repeatedly observed motion sequences that allow for pre-trial motion prediction."<cite>Kerzel2010</cite>
 
Usually flash-lag type papers find no extrapolation in offset-synchronized condition. So is there something about a Freyd-type probe (judging last position relative to a probe like itself instead of relative to a contemporaneous flash) that causes the effect? This is consistent with memory effect because you need some temporal interval between stimulus stopping and the probe.
 
The following is invalid because they didn’t require or even ask for fixation, and work by Brenner et al “Flashes are localised as if they were moving with the eyes” , dating back to <cite>HazelhoffWiersma1924</cite>, shows that flashed during smooth pursuit are mislocalized in the direction of the eye movement, and smooth pursuit eye movements reflect anticipated reversals. Check the effect doesn't reverse when reversal is anticipated: "the target bounced within the confines of a square frame. Judged vanishing point was displaced in the anticipated direction, even when the anticipated direction was opposite to the current path of motion." <cite>HubbardBharucha</cite>


===Refs===
===Refs===
<biblio>
<biblio>
#ArnoldJohnston03 pmid=12968181
#ArnoldJohnston03 pmid=12968181
#Blom19 pmid=30725096
#BrennerSV01 pmid=11448717
#CaiSchlag01 Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127
#CaiSchlag01 Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127
#DurantZanker09 pmid=19126535
#EaglemanSejnowski07 pmid=17461687
#EaglemanSejnowski07 pmid=17461687
#ChungEtAl07 pmid=17190608
#ChungEtAl07 pmid=17190608
#SinicoEtAl09 pmid=19653741
#FanHarris08 pmid=18824016
#FanHarris08 pmid=18824016
#RamaAnstis90 pmid=2102995
#RamaAnstis90 pmid=2102995
Line 256: Line 353:
#CarbonePomplun07 pmid=16645880
#CarbonePomplun07 pmid=16645880
#DurantJohnston pmid=14659962
#DurantJohnston pmid=14659962
#CavanaghAnstis13 pmid=23872166
#HayesFreyd95 Hayes,A.E., Freyd, J.J.(1995). Attention and representational momentumm (Tech.Rep.No.9512). Eugene, OR: University of Oregon, Institute of Cognitive and Decision Sciences.
#HubbardBharucha pmid=3174353
#HayesFreyd02 Hayes Amy E, Freyd J (2002) Representational momentum when attention is divided. Visual cognition 9:8-27.
#WhitneyCavanagh02 Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of  
#WhitneyCavanagh02 Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of  
moving stimuli. Visual Cognition 9:139–152.
moving stimuli. Visual Cognition 9:139–152.
#KerzelGegenfurtner03 pmid=14614823
#Kerzel2010 A matter of design: No representational momentum without predictability. Visual Cognition
#WhitneyCavanagh00 pmid=10966628
#WhitneyCavanagh00 pmid=10966628
#HazelhoffWiersma1924 Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188
#HazelhoffWiersma1924 Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188
#Kerzel05 Representation Momentum Beyond Internalized Physics. Current Directions in Psychological Science. 2005; 14:4
#MusselerKerzel04 pmid=15208006
#MusselerKerzel04 pmid=15208006
#HubbardMotes pmid=11747866
#HubbardMotes pmid=11747866
#deValois91 pmid=1949630
#LinaresLopezJohnston07 pmid=17685797
#LinaresHolcombeWhite2009 pmid=20055542
#LinaresHolcombe2008neurophys pmid=18753324
#LinaresHolcombe2008neurophys pmid=18753324
#LinaresHolcombe2008xx Linares D, Holcombe AO. Unpublished results. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability.
#LinaresHolcombe2008xx Linares D, Holcombe AO. https://osf.io/3t542/. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability.
#MausEtAl20 pmid=32804582
#Moradi http://www.klab.caltech.edu/~farshadm/demo/
#Moradi http://www.klab.caltech.edu/~farshadm/demo/
#WhiteLeviAitsebaomo1992 pmid=1604838
#WhiteLeviAitsebaomo1992 pmid=1604838
Line 276: Line 384:
#KerzelMusseler02 pmid=11809472  
#KerzelMusseler02 pmid=11809472  
#Kirschfeld98 pmid=10746140
#Kirschfeld98 pmid=10746140
#KohlerCavanaghTse15 pmid=25782364
#MatherPavan2009 pmid=19761786
#MatherPavan2009 pmid=19761786
#MuraiMurakami16 pmid=27690171
#NakajimaSakaguchi16 pmid=27464844
#PostEtAl89 pmid=2726403
#PostEtAl89 pmid=2726403
#RamaInada1985 pmid=3940050
#RamaInada1985 pmid=3940050
Line 282: Line 393:
#Snowden98 pmid=9843685
#Snowden98 pmid=9843685
#Gauch08 pmid=18717394
#Gauch08 pmid=18717394
#Fukiage11 pmid=22080448
#KreegAllik03 pmid=12798145
#RotmanBS04 pmid=15330702
#RotmanBS04 pmid=15330702
#RotmanBS05 pmid=15607351
#YilmazEtAl07 pmid=17697692
#NakaHolcombe2021 pmid=34673899
#NishidaJohnston99 pmid=10050853
#NishidaJohnston99 pmid=10050853
#OzkanAnstis21 pmid=34131080
#LiKhuuHayes09 pmid=18831614
#LiKhuuHayes09 pmid=18831614
#ShethNijhawanShimojo pmid=10769390
#ShethNijhawanShimojo pmid=10769390
#ShimCav05 pmid=16039690
#ShimCav06 pmid=16774774
#Sundberg2006 pmid=16446147
#Holcombe09  Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653
#Holcombe09  Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653
#Takao22 pmid= 36445715
#TseEtAl11 pmid=21415228
#VrevenVerghese pmid=15773605
#WatanabeSatoShimojo pmid=17184808
#WatanabeSatoShimojo pmid=17184808
#Whitney06 pmid=17154779
#Whitney06 pmid=17154779
#Whitney05 pmid=15886084
#Whitney05 pmid=15886084
#Wilson2021 Motion Extrapolation in the Twinkle Goes Illusion: Effects of Speed, Contrast and Duration. Honours thesis with Hinze Hogendoorn
#Wojtach2008 pmid=18852459
#BresslerWhitney06 pmid=16359721
#RoulstonSelfZeki2006 pmid=16959642
</biblio>
</biblio>
* The idea of separate position representations (e.g. for first- and second-order motion as suggested by Pavan & Mather 2008) is really fascinating
* Nicolls,Mattingley,Berberovic,Smith,&Bradshaw(2004) review horiz/vert asymmetries we should check out for ideas
* To explain the Cai & Schlag smooth pursuit flash mislocalisation effect, Rotman, Brenner , Smeets (2005) suggest that efference copy motion signal is combined with (absent) retinal motion of flash to yield extrapolation. They present their whack-a-mole targets for variable duration and find the longer the exposure duration, the less mislocalization in the direction of the eye movement. They theorize that the reason is that the longer targets have more retinal motion opposite the pursuit, so this cancels the efference copy to eliminate the extrapolation. An alternative account is that longer exposure improves the integration with spatiotopically stationary landmarks, reducing the reliance on the retinotopic code. Since this does not help for targets moving with the eyes, would have to posit that stabilization thanks to landmarks doesn't happen with moving targets. But this seems unlikely. I would like to see 1) Mislocalization when target moves in orthogonal direction 2) Whether variability (presumably spatial in both cases, since we find spatial for Cai&Schlag), which might implicate growth of a spatial code.

Latest revision as of 11:59, 22 March 2024

Recent members

Alex Holcombe
• Ryo Nakayama



Technical

Skills Checklist
Python Programming
Psychopy/VisionEgg Installation Notes
R analysis,plot,stats
Statistics
Buttonbox
Buttonbox with photocell
Programming Cheat Sheets



Phenomenon interval before transient (predictn) interval after transient (postdictn) Temporal Bias- increase w/speed, or temporal freq tuned Spatial Variab Temporal Variab Foveo attn effect awareness necess vector sum /IOC, hi-level motion landmarks Effect of motion dur feature space affects eyemove retinal motn sufficnt Spatial asymm (behind/in front of motion)
Flash-lag yes substantial in some participants and negative in some, but linear, implicating asynchrony[1] (see [2] for more refs). Except hi-speed testing found logarithmic[2] 0 80ms petal[3],[4] ? yes[5] less spatial σ? Increase[6], Decrease[7] yes[8]
Flashes during smooth pursuit[9](in extrapolation direction), eliminated by longer flash creating contrary motion yes[10] 200 ms[11] large ?? discrepant Ss[12] ?? ?? ?? reduces[13]
Motion on nearby flash (flash-drag)[14] ~0[14, 15, 16] 80-200ms later matters[14, 15, 16], strongest for moving grating onsetting 100ms later[16] but peaks at reversal time in reversal paradigm[14, 15] ~0[14, 17] ?? betting0 ?? Pre-attentive[18] but attending to a motion determines direction[19] not early[20] Large. Big ahead of tracked bars.[21]
Flash attracted toward position of motion[22], and endpoint of AM[23] yes[24][25] 0[24],not much[25]
Offset localizatn lag offset of blurred peaked at slow in [26], but high-speed LINEAR (or log?) to 70degpersec,implying 24ms[27] lag
Offset localizatn extrap / representational momentum (Josh review) illusion bigger with eye move or pointing[28]? With fixatn[29]
33ms[30]
0 - increases with speed (with pointing response but not same/different judgment) but not enough for constant time[31] Bigger with both split attention[29][32] and secondary task[29]
Offset localizatn with flash (flash-terminated) Mixed evidence, depends on uncertainty?[4] flash-terminated saturated at slow[4]
Twinkle goes (Offset localization transient-masked) <<80ms?[33] ~50ms[33] LINEAR in [34] implying 13 ms with 100ms fading time. LINEAR in [33] implying 50 ms, but saturation over 1.2rps. [35] found much smaller effect of speed Larger with shorter duration[35]
Shrinkage of motion paths (related to offset localization) linear but they test only 3 speeds, max 6.5 deg/sec or .74 rev/sec [36] large, based on cloud test[37]
Flash-grab[37](putatively a way to measure the shrinkage effect) ~0[37], 12%[38], 25-50%[39] Strongest when flash occurs at time of reversal, gradually declines as reversal occurs later until ~200 ms[37], whereas flash-drag stays substantial for up to 5s after reversal[15] Linear (really, decelerating?) up to .75rps[37] (could continue faster if faster monitor?), suggesting 50ms. To be explained by temporal averaging, 100ms mostly component, partly global motion[40]
Flash-jump[5, 41] feature change in apparent motion.[37] Never tested 0[12, 42] ? 0?[12] fugal[12] yes[5]
Frame effect[43] 0[43] reduces
Frohlich (whether it or onset repulsion found depends on task[44][45]) N/A 0[12],<27ms[46] fugal:10ms,petal:15ms[47],0-5ms[45],2-8ms[48],79ms[17]

39ms[49],100ms[50],18ms but nonlinear[27]

? 0 .5deg fugal:1.5deg, petal:0[47]

[51],0[12]

yes but didn't control for possible subject bias toward cue, and cue in other location didn't increase effect[47] no[52]
onset-repuls <=15ms[53],[30]
Facilitation ahead of moving object[52]
Double-drift / curveball Accumulates for almost 1 s
MIPS blurred edges[54] large[55][56] Tuned to temporal freq [57][54] miniscule miniscule fugal[3] No[58] yes[56],[59] No? Saturating at 180ms[52]; dipping 60->90ms[55]
MIPS sharp edges[60] read[61] [61] [61] petal[61]
bg motion->IC[62] not much? only 2 speeds tested[62]
Motion capture[63]
Motion adapt saturat at 5degpersec/Hz[64] ~0[34] ~0[34] fugal Yes[34] No[65]
binding 0[66]
Tandem[48]
induced motion 0? Yes[67]
10Hz jitter[68] yes
Floating square[69] no
Eyeblink extrapolation yes no [70]
timed buttonpress
reverse rep-mo [71]


reverse rep-mo: "These displacements are in the direction opposite to displacements typically obtained in studies on the flash-lag effect and in studies on representational momentum, and the reasons for these differences are not clear. One possible explanation involves the time course of displacement. Freyd and Johnson (1987) reported forward displacement peaked after a few hundred milliseconds and then decreased, and they attributed this pattern to two distinct processes: an initial forward extrapolation process that displaced represented location in the direction of target motion (representational momentum) and a subsequent memory averaging process that displaced represented location toward an average of the stimulus locations. Depending upon the latency of judgment in Roulston et al. (which was not reported), the apparent reverse-repmo might reflect this subsequent memory averaging. This remains an issue for further research." Hubbard 2013

Miscellaneous

Flash-jump effect, with eight-bar sequence, results in activity for the flash being shifted in V4[72]

motion-defined motion contours also are perceived shifted[73]

  • Importance of motion reversal or sudden onset: Cavanagh & Anstis (2013): The flash-grab effect is strongest when the flash occurs at the moment of reversal. When it occurred earlier or later, the effect dropped to quite small values. There is a large effect that extends 200 ms before and after the reversal. This fairly symmetrical effect contrasts to the asymmetrical and longer lasting effect seen for the flash drag stimulus (e.g., Whitney & Cavanagh, 2000a). With their stimulus, the effect also began 200-300 ms before the reversal, reaching a maximum at the time of the reversal, but then remained at that level for 2 s. Roach and McGraw (2009) found the flash drag effect was maximum at the time of a motion onset and decreased within a second to about half of its maximum, maintaining that level for as long as 5 s.
  • Remapping or object prediction/postdiction: If it's for saccadic or head-movement remapping, would expect it would require large-field motion to be triggered, as opposed to motion of a small object being sufficient.
  • Effect of speed and Wojtach et al. results that above 15 deg per second it starts to saturate, for a max of 2 dva!

It is fascinating that the FLE saturated at just 2 deg of visual angle! Is the authors’ explanation correct? Supporting evidence could come from other studies that would utilize a speed prior. At first I thought it might be an artifact of the researchers using linear trajectory and a small field of view (15 deg), but it certainly isn’t because of truncation by that 15 deg field of view. Although it could impair the initial percept, should be replicated with circular trajectories. Individual data is not shown , the paper just says similarity justified combining the individual data. I have not compared and contrasted with Linares Holcombe & White.

How to avoid contamination by representational momentum

"The forward shift and the reversal of the shift with time (memory averaging) were absent when both factors were randomized. Thus, the forward shift with implied motion is restricted to repeatedly observed motion sequences that allow for pre-trial motion prediction."[74]

Usually flash-lag type papers find no extrapolation in offset-synchronized condition. So is there something about a Freyd-type probe (judging last position relative to a probe like itself instead of relative to a contemporaneous flash) that causes the effect? This is consistent with memory effect because you need some temporal interval between stimulus stopping and the probe.

The following is invalid because they didn’t require or even ask for fixation, and work by Brenner et al “Flashes are localised as if they were moving with the eyes” , dating back to [9], shows that flashed during smooth pursuit are mislocalized in the direction of the eye movement, and smooth pursuit eye movements reflect anticipated reversals. Check the effect doesn't reverse when reversal is anticipated: "the target bounced within the confines of a square frame. Judged vanishing point was displaced in the anticipated direction, even when the anticipated direction was opposite to the current path of motion." [75]

Refs

  1. Linares D, Holcombe AO, and White AL. Where is the moving object now? Judgments of instantaneous position show poor temporal precision (SD = 70 ms). J Vis. 2009 Dec 8;9(13):9.1-14. DOI:10.1167/9.13.9 | PubMed ID:20055542 | HubMed [LinaresHolcombeWhite2009]
  2. Wojtach WT, Sung K, Truong S, and Purves D. An empirical explanation of the flash-lag effect. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16338-43. DOI:10.1073/pnas.0808916105 | PubMed ID:18852459 | HubMed [Wojtach2008]
  3. Linares D and Holcombe AO. Position perception: influence of motion with displacement dissociated from the influence of motion alone. J Neurophysiol. 2008 Nov;100(5):2472-6. DOI:10.1152/jn.90682.2008 | PubMed ID:18753324 | HubMed [LinaresHolcombe2008neurophys]
  4. Kanai R, Sheth BR, and Shimojo S. Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res. 2004;44(22):2605-19. DOI:10.1016/j.visres.2003.10.028 | PubMed ID:15358076 | HubMed [KanaiShethShimojo04]
  5. Kanai R, Sheth BR, and Shimojo S. Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res. 2004;44(22):2605-19. DOI:10.1016/j.visres.2003.10.028 | PubMed ID:15358076 | HubMed [KanaiShethShimojo04]
  6. Eagleman DM and Sejnowski TJ. Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. J Vis. 2007 Mar 13;7(4):3. DOI:10.1167/7.4.3 | PubMed ID:17461687 | HubMed [EaglemanSejnowski07]
  7. Linares D, López-Moliner J, and Johnston A. Motion signal and the perceived positions of moving objects. J Vis. 2007 May 7;7(7):1.1-7. DOI:10.1167/7.7.1 | PubMed ID:17685797 | HubMed [LinaresLopezJohnston07]
  8. Vreven D and Verghese P. Predictability and the dynamics of position processing in the flash-lag effect. Perception. 2005;34(1):31-44. DOI:10.1068/p5371 | PubMed ID:15773605 | HubMed [VrevenVerghese]
  9. Sheth BR, Nijhawan R, and Shimojo S. Changing objects lead briefly flashed ones. Nat Neurosci. 2000 May;3(5):489-95. DOI:10.1038/74865 | PubMed ID:10769390 | HubMed [ShethNijhawanShimojo]
  10. Hazelhoff FF, Wiersma H. Die Wahrnehmungszeit [The sensation time]. Zeitschrift für Psychologie. 1924;96:171-188

    [HazelhoffWiersma1924]
  11. Rotman G, Brenner E, and Smeets JB. Mislocalization of targets flashed during smooth pursuit depends on the change in gaze direction after the flash. J Vis. 2004 Jul 13;4(7):564-74. DOI:10.1167/4.7.4 | PubMed ID:15330702 | HubMed [RotmanBS04]
  12. Rotman G, Brenner E, and Smeets JB. Flashes are localised as if they were moving with the eyes. Vision Res. 2005 Feb;45(3):355-64. DOI:10.1016/j.visres.2004.08.014 | PubMed ID:15607351 | HubMed [RotmanBS05]
  13. Linares D, Holcombe AO. https://osf.io/3t542/. 2008. Reported at VSS 2009, Dissociating motion-induced position illusions by the velocity dependence of both their magnitude and their variability.

    [LinaresHolcombe2008xx]
  14. Brenner E, Smeets JB, and van den Berg AV. Smooth eye movements and spatial localisation. Vision Res. 2001 Aug;41(17):2253-9. DOI:10.1016/s0042-6989(01)00018-9 | PubMed ID:11448717 | HubMed [BrennerSV01]
  15. Whitney D and Cavanagh P. Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci. 2000 Sep;3(9):954-9. DOI:10.1038/78878 | PubMed ID:10966628 | HubMed [WhitneyCavanagh00]
  16. Roach NW and McGraw PV. Dynamics of spatial distortions reveal multiple time scales of motion adaptation. J Neurophysiol. 2009 Dec;102(6):3619-26. DOI:10.1152/jn.00548.2009 | PubMed ID:19812288 | HubMed [RoachMcGraw09]
  17. Murai Y and Murakami I. The flash-lag effect and the flash-drag effect in the same display. J Vis. 2016 Sep 1;16(11):31. DOI:10.1167/16.11.31 | PubMed ID:27690171 | HubMed [MuraiMurakami16]
  18. Whitney D, Cavanagh P. (2002) Surrounding motion affects the perceived locations of

    moving stimuli. Visual Cognition 9:139–152.

    [WhitneyCavanagh02]
  19. Fukiage T, Whitney D, and Murakami I. A flash-drag effect in random motion reveals involvement of preattentive motion processing. J Vis. 2011 Nov 11;11(13). DOI:10.1167/11.13.12 | PubMed ID:22080448 | HubMed [Fukiage11]
  20. Tse PU, Whitney D, Anstis S, and Cavanagh P. Voluntary attention modulates motion-induced mislocalization. J Vis. 2011 Mar 17;11(3):12. DOI:10.1167/11.3.12 | PubMed ID:21415228 | HubMed [TseEtAl11]
  21. de'Sperati C and Baud-Bovy G. Blind saccades: an asynchrony between seeing and looking. J Neurosci. 2008 Apr 23;28(17):4317-21. DOI:10.1523/JNEUROSCI.0352-08.2008 | PubMed ID:18434509 | HubMed [deSperati08]
  22. Shim WM and Cavanagh P. Attentive tracking shifts the perceived location of a nearby flash. Vision Res. 2005 Nov;45(25-26):3253-61. DOI:10.1016/j.visres.2005.05.029 | PubMed ID:16039690 | HubMed [ShimCav05]
  23. Yilmaz O, Tripathy SP, Patel SS, and Ogmen H. Attraction of flashes to moving dots. Vision Res. 2007 Sep;47(20):2603-15. DOI:10.1016/j.visres.2007.06.017 | PubMed ID:17697692 | HubMed [YilmazEtAl07]
  24. Shim WM and Cavanagh P. Bi-directional illusory position shifts toward the end point of apparent motion. Vision Res. 2006 Oct;46(19):3214-22. DOI:10.1016/j.visres.2006.04.001 | PubMed ID:16774774 | HubMed [ShimCav06]
  25. Durant S and Johnston A. Temporal dependence of local motion induced shifts in perceived position. Vision Res. 2004 Feb;44(4):357-66. DOI:10.1016/j.visres.2003.09.022 | PubMed ID:14659962 | HubMed [DurantJohnston]
  26. Tsui SY, Khuu SK, and Hayes A. The perceived position shift of a pattern that contains internal motion is accompanied by a change in the pattern's apparent size and shape. Vision Res. 2007 Feb;47(3):402-10. DOI:10.1016/j.visres.2006.11.003 | PubMed ID:17184808 | HubMed [WatanabeSatoShimojo]
  27. Fu YX, Shen Y, and Dan Y. Motion-induced perceptual extrapolation of blurred visual targets. J Neurosci. 2001 Oct 15;21(20):RC172. DOI:10.1523/JNEUROSCI.21-20-j0003.2001 | PubMed ID:11588202 | HubMed [FuShenDan01]
  28. Nakajima Y and Sakaguchi Y. Perceptual shrinkage of a one-way motion path with high-speed motion. Sci Rep. 2016 Jul 28;6:30592. DOI:10.1038/srep30592 | PubMed ID:27464844 | HubMed [NakajimaSakaguchi16]
  29. Representation Momentum Beyond Internalized Physics. Current Directions in Psychological Science. 2005; 14:4

    [Kerzel05]
  30. Hayes Amy E, Freyd J (2002) Representational momentum when attention is divided. Visual cognition 9:8-27.

    [HayesFreyd02]
  31. Hubbard TL and Motes MA. Does representational momentum reflect a distortion of the length or the endpoint of a trajectory?. Cognition. 2002 Jan;82(3):B89-99. DOI:10.1016/s0010-0277(01)00156-1 | PubMed ID:11747866 | HubMed [HubbardMotes]
  32. Kerzel D and Gegenfurtner KR. Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol. 2003 Nov 11;13(22):1975-8. DOI:10.1016/j.cub.2003.10.054 | PubMed ID:14614823 | HubMed [KerzelGegenfurtner03]
  33. Hayes,A.E., Freyd, J.J.(1995). Attention and representational momentumm (Tech.Rep.No.9512). Eugene, OR: University of Oregon, Institute of Cognitive and Decision Sciences.

    [HayesFreyd95]
  34. Nakayama R and Holcombe AO. A dynamic noise background reveals perceptual motion extrapolation: The twinkle-goes illusion. J Vis. 2021 Oct 5;21(11):14. DOI:10.1167/jov.21.11.14 | PubMed ID:34673899 | HubMed [NakaHolcombe2021]
  35. Nishida S and Johnston A. Influence of motion signals on the perceived position of spatial pattern. Nature. 1999 Feb 18;397(6720):610-2. DOI:10.1038/17600 | PubMed ID:10050853 | HubMed [NishidaJohnston99]
  36. Motion Extrapolation in the Twinkle Goes Illusion: Effects of Speed, Contrast and Duration. Honours thesis with Hinze Hogendoorn

    [Wilson2021]
  37. Sinico M, Parovel G, Casco C, and Anstis S. Perceived shrinkage of motion paths. J Exp Psychol Hum Percept Perform. 2009 Aug;35(4):948-57. DOI:10.1037/a0014257 | PubMed ID:19653741 | HubMed [SinicoEtAl09]
  38. Cavanagh P and Anstis S. The flash grab effect. Vision Res. 2013 Oct 18;91:8-20. DOI:10.1016/j.visres.2013.07.007 | PubMed ID:23872166 | HubMed [CavanaghAnstis13]
  39. Blom T, Liang Q, and Hogendoorn H. When predictions fail: Correction for extrapolation in the flash-grab effect. J Vis. 2019 Feb 1;19(2):3. DOI:10.1167/19.2.3 | PubMed ID:30725096 | HubMed [Blom19]
  40. pmid= 36445715

    [Takao22]
  41. Kohler PJ, Cavanagh P, and Tse PU. Motion-induced position shifts are influenced by global motion, but dominated by component motion. Vision Res. 2015 May;110(Pt A):93-9. DOI:10.1016/j.visres.2015.03.003 | PubMed ID:25782364 | HubMed [KohlerCavanaghTse15]
  42. Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. Journal of Vision, 1(3):127, 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127

    [CaiSchlag01]
  43. Gauch A and Kerzel D. Perceptual asynchronies between color and motion at the onset of motion and along the motion trajectory. Percept Psychophys. 2008 Aug;70(6):1092-103. DOI:10.3758/pp.70.6.1092 | PubMed ID:18717394 | HubMed [Gauch08]
  44. Özkan M, Anstis S, 't Hart BM, Wexler M, and Cavanagh P. Paradoxical stabilization of relative position in moving frames. Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). DOI:10.1073/pnas.2102167118 | PubMed ID:34131080 | HubMed [OzkanAnstis21]
  45. Kreegipuu K and Allik J. Perceived onset time and position of a moving stimulus. Vision Res. 2003 Jul;43(15):1625-35. DOI:10.1016/s0042-6989(03)00165-2 | PubMed ID:12798145 | HubMed [KreegAllik03]
  46. Kerzel D. Different localization of motion onset with pointing and relative judgements. Exp Brain Res. 2002 Aug;145(3):340-50. DOI:10.1007/s00221-002-1126-5 | PubMed ID:12136384 | HubMed [Kerzel02]
  47. Müsseler J and Kerzel D. The trial context determines adjusted localization of stimuli: reconciling the Fröhlich and onset repulsion effects. Vision Res. 2004;44(19):2201-6. DOI:10.1016/j.visres.2004.04.007 | PubMed ID:15208006 | HubMed [MusselerKerzel04]
  48. Müsseler J and Aschersleben G. Localizing the first position of a moving stimulus: the Fröhlich effect and an attention-shifting explanation. Percept Psychophys. 1998 May;60(4):683-95. DOI:10.3758/bf03206055 | PubMed ID:9628999 | HubMed [Musseler98]
  49. Müsseler J and Neumann O. Apparent distance reduction with moving stimuli (Tandem Effect): evidence for an attention-shifting model. Psychol Res. 1992;54(4):246-66. DOI:10.1007/BF01358263 | PubMed ID:1494610 | HubMed [MusselerNeumann92]
  50. Kerzel D and Müsseler J. Effects of stimulus material on the Fröhlich illusion. Vision Res. 2002 Jan;42(2):181-9. DOI:10.1016/s0042-6989(01)00271-1 | PubMed ID:11809472 | HubMed [KerzelMusseler02]
  51. Kirschfeld K and Kammer T. The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res. 1999 Nov;39(22):3702-9. DOI:10.1016/s0042-6989(99)00089-9 | PubMed ID:10746140 | HubMed [Kirschfeld98]
  52. Carbone E and Pomplun M. Motion misperception caused by feedback connections: a neural model simulating the Fröhlich effect. Psychol Res. 2007 Nov;71(6):709-15. DOI:10.1007/s00426-006-0060-8 | PubMed ID:16645880 | HubMed [CarbonePomplun07]
  53. Arnold DH, Thompson M, and Johnston A. Motion and position coding. Vision Res. 2007 Aug;47(18):2403-10. DOI:10.1016/j.visres.2007.04.025 | PubMed ID:17643464 | HubMed [ArnoldThompsonJohnston]
  54. Thornton IM. The onset repulsion effect. Spat Vis. 2002;15(2):219-43. DOI:10.1163/15685680252875183 | PubMed ID:11991576 | HubMed [Thornton02]
  55. De Valois RL and De Valois KK. Vernier acuity with stationary moving Gabors. Vision Res. 1991;31(9):1619-26. DOI:10.1016/0042-6989(91)90138-u | PubMed ID:1949630 | HubMed [deValois91]
  56. Chung ST, Patel SS, Bedell HE, and Yilmaz O. Spatial and temporal properties of the illusory motion-induced position shift for drifting stimuli. Vision Res. 2007 Jan;47(2):231-43. DOI:10.1016/j.visres.2006.10.008 | PubMed ID:17190608 | HubMed [ChungEtAl07]
  57. Mather G and Pavan A. Motion-induced position shifts occur after motion integration. Vision Res. 2009 Nov;49(23):2741-6. DOI:10.1016/j.visres.2009.07.016 | PubMed ID:19761786 | HubMed [MatherPavan2009]
  58. Bressler DW and Whitney D. Second-order motion shifts perceived position. Vision Res. 2006 Mar;46(6-7):1120-8. DOI:10.1016/j.visres.2005.10.012 | PubMed ID:16359721 | HubMed [BresslerWhitney06]
  59. Whitney D. Motion distorts perceived position without awareness of motion. Curr Biol. 2005 May 10;15(9):R324-6. DOI:10.1016/j.cub.2005.04.043 | PubMed ID:15886084 | HubMed [Whitney05]
  60. Rider AT, McOwan PW, and Johnston A. Motion-induced position shifts in global dynamic Gabor arrays. J Vis. 2009 Dec 8;9(13):8.1-8. DOI:10.1167/9.13.8 | PubMed ID:20055541 | HubMed [RiderMcOwanJohnston09]
  61. Ramachandran VS and Anstis SM. Illusory displacement of equiluminous kinetic edges. Perception. 1990;19(5):611-6. DOI:10.1068/p190611 | PubMed ID:2102995 | HubMed [RamaAnstis90]
  62. Fan Z and Harris J. Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Res. 2008 Dec;48(28):2793-804. DOI:10.1016/j.visres.2008.09.006 | PubMed ID:18824016 | HubMed [FanHarris08]
  63. Lee TC, Khuu SK, Li W, and Hayes A. Distortion in perceived image size accompanies flash lag in depth. J Vis. 2008 Aug 29;8(11):20.1-10. DOI:10.1167/8.11.20 | PubMed ID:18831614 | HubMed [LiKhuuHayes09]
  64. Ramachandran VS and Inada V. Spatial phase and frequency in motion capture of random-dot patterns. Spat Vis. 1985;1(1):57-67. DOI:10.1163/156856885x00080 | PubMed ID:3940050 | HubMed [RamaInada1985]
  65. Snowden RJ. Shifts in perceived position following adaptation to visual motion. Curr Biol. 1998 Dec 3;8(24):1343-5. DOI:10.1016/s0960-9822(07)00567-2 | PubMed ID:9843685 | HubMed [Snowden98]
  66. Whitney D. Contribution of bottom-up and top-down motion processes to perceived position. J Exp Psychol Hum Percept Perform. 2006 Dec;32(6):1380-97. DOI:10.1037/0096-1523.32.6.1380 | PubMed ID:17154779 | HubMed [Whitney06]
  67. Holcombe, A.O. (2009). Temporal binding favors the early phase of color changes, but not of motion changes, yielding the color-motion asynchrony illusion. Visual Cognition- Special issue on binding, 17(1-2), 232-253. doi:10.1080/13506280802340653

    [Holcombe09]
  68. Post RB, Chi D, Heckmann T, and Chaderjian M. A reevaluation of the effect of velocity on induced motion. Percept Psychophys. 1989 May;45(5):411-6. DOI:10.3758/bf03210714 | PubMed ID:2726403 | HubMed [PostEtAl89]
  69. Arnold DH and Johnston A. Motion-induced spatial conflict. Nature. 2003 Sep 11;425(6954):181-4. DOI:10.1038/nature01955 | PubMed ID:12968181 | HubMed [ArnoldJohnston03]
  70. Carlson TA, Schrater P, and He S. Floating square illusion: perceptual uncoupling of static and dynamic objects in motion. J Vis. 2006 Feb 13;6(2):132-44. DOI:10.1167/6.2.4 | PubMed ID:16522140 | HubMed [CarlsonSchraterHe06]
  71. Maus GW, Goh HL, and Lisi M. Perceiving Locations of Moving Objects Across Eyeblinks. Psychol Sci. 2020 Sep;31(9):1117-1128. DOI:10.1177/0956797620931365 | PubMed ID:32804582 | HubMed [MausEtAl20]
  72. Roulston BW, Self MW, and Zeki S. Perceptual compression of space through position integration. Proc Biol Sci. 2006 Oct 7;273(1600):2507-12. DOI:10.1098/rspb.2006.3616 | PubMed ID:16959642 | HubMed [RoulstonSelfZeki2006]
  73. Sundberg KA, Fallah M, and Reynolds JH. A motion-dependent distortion of retinotopy in area V4. Neuron. 2006 Feb 2;49(3):447-57. DOI:10.1016/j.neuron.2005.12.023 | PubMed ID:16446147 | HubMed [Sundberg2006]
  74. Durant S and Zanker JM. The movement of motion-defined contours can bias perceived position. Biol Lett. 2009 Apr 23;5(2):270-3. DOI:10.1098/rsbl.2008.0622 | PubMed ID:19126535 | HubMed [DurantZanker09]
  75. A matter of design: No representational momentum without predictability. Visual Cognition

    [Kerzel2010]
  76. Hubbard TL and Bharucha JJ. Judged displacement in apparent vertical and horizontal motion. Percept Psychophys. 1988 Sep;44(3):211-21. DOI:10.3758/bf03206290 | PubMed ID:3174353 | HubMed [HubbardBharucha]
  77. [Moradi]
  78. White JM, Levi DM, and Aitsebaomo AP. Spatial localization without visual references. Vision Res. 1992 Mar;32(3):513-26. DOI:10.1016/0042-6989(92)90243-c | PubMed ID:1604838 | HubMed [WhiteLeviAitsebaomo1992]
All Medline abstracts: PubMed | HubMed