IGEM:Caltech/2008/Project: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 22: Line 22:
===Lactose intolerance===
===Lactose intolerance===
*Secreted or intracellular?<cite>jiang, devrese</cite>
*Secreted or intracellular?<cite>jiang, devrese</cite>
**'''[[User:Robert Ovadia|Robert]] 22:18, 22 May 2008 (EDT)''':For article 7, does B. longum contain the beta-gal gene? Or are they testing another way to reduce lactose by using B. longum? I googled the strain and I couldn't find much about it, but that it does ferment sugars into lactic acid, so I am guessing it has the gene, or one of similar kind.
*What's the proximate cause of the lactose intolerance phenotype?
*What's the proximate cause of the lactose intolerance phenotype?
**Usually, lactose is split into glucose and galactose by lactase present in the villi of the small intestine. If lactase is not present, the lactose continues into the colon, where it is metabolized by gut flora, resulting in in vivo fermentation. [http://en.wikipedia.org/wiki/Lactose_intolerance Wikipedia]
**Usually, lactose is split into glucose and galactose by lactase present in the villi of the small intestine. If lactase is not present, the lactose continues into the colon, where it is metabolized by gut flora, resulting in in vivo fermentation. [http://en.wikipedia.org/wiki/Lactose_intolerance Wikipedia]

Revision as of 19:18, 22 May 2008


iGEM 2008

Home        People        Project        Protocols        Notes        Ideas        Changes       


Engineered Gut Microbiota

Vitamins

  • Beta carotene
  • Need others...
    • Biotin[1]
    • Vitamin D
    • Vitamin E
    • Folate[2, 3, 4, 5]
  • Secretion? How are the vitamins readsorbed?
  • Vitamin K - natural model[6]

Lactose intolerance

  • Secreted or intracellular?[7, 8]
    • Robert 22:18, 22 May 2008 (EDT):For article 7, does B. longum contain the beta-gal gene? Or are they testing another way to reduce lactose by using B. longum? I googled the strain and I couldn't find much about it, but that it does ferment sugars into lactic acid, so I am guessing it has the gene, or one of similar kind.
  • What's the proximate cause of the lactose intolerance phenotype?
    • Usually, lactose is split into glucose and galactose by lactase present in the villi of the small intestine. If lactase is not present, the lactose continues into the colon, where it is metabolized by gut flora, resulting in in vivo fermentation. Wikipedia
      • Josh K. Michener 12:25, 19 May 2008 (EDT): Lactose causes two problems: first, metabolism into H2 (and possibly further into methane) or it changes the osmolarity of the gut and causes diarrhea [1]. So there are a number of directions we can attack this from - consume H2, do a better job of making lactase, digesting the glucose and galactose first, importing and sequestering the lactose, etc. The natural pathway seems to be sugar->lactate/acetate->H2->methane. So if we can get a good aerobic culture going, that might be enough.
  • Our lactase-producing bacteria would have to somehow outcompete the lactose-metabolizing bacteria in the colon.
    • It would at least have to get to the lactose first, so that the other bacteria don't get a chance to ferment it.
    • Or it could produce so much extracellular lactase that any lactose entering the colon would immediately be broken down.
    • Would we want our bacteria to live in the small intestine?

Prophage targeting other bacteria

    • lamB is sufficient for lambda infection.
    • Looking at other receptors
    • SPO2 is a lysogenic subtilis phage
    • How do we get the phage inside the cell? Take a resistant strain (coli w/o lamB for lambda, coli for a subtilis phage), add the necessary receptor on a plasmid. Infect, select for lysogens. Grow under nonselective conditions, then counterselect for loss of the plasmid. Voila. Tetracycline can be counterselected[9].

Population Variation

  • Slipped-strand mispairing (SSM)[10] can produce a heritable variation in the expression from a promoter. Roughly one in 1000 divisions produces a change in expression. Couple this expression to a selectable/counterselectable marker. Under any given condition (selection, say), the population thrives, but with a small group of the opposite phenotype (non-expressing). Switch conditions (to counterselecting), and the population can use these revertants to recover. The switching is stochastic by nature and can be directly compared to both natural [11] and synthetic [12] systems that utilize stochastic switching to adapt to variable and fluctuating environments.
  • Also use FimE (below)?

Heavy Metal Chelation

  • Need details here

ROS bursts

ROS

  • H2O2 [13, 14]
    • Turn on xanthine oxidase[15, 16] (or galactose oxidase[17]), turn off catalase
      • Doug Tischer 03:23, 17 May 2008 (EDT)I like using xanthine oxidase because it can be suddenly "turned on" (really, changed from xanthine dehydrogenase to xanthine oxidase) through proteolytic cleavage. However, this is only true of mammalian xanthine oxidases. It is further complicated by the fact that xanthine oxidase can be revirsibly turned on/off by oxidation/reduction of some disulfide bonds. I'd be worried that because it is a mammalian protein with some disulfide bridges, that we wouldn't get good expression in bacteria. I tried to see if anyone has expressed it in E. coli, but haven't had any luck. There are bacterial versions of xanthine oxidase, but these can't be turned on/off like their mammalian cousins. We could try to make the bacterial xanthine oxidase turn on and off by preventing their natural dimerization by adding some interfering peptide sequence. This would be linked to the original protein by a linker domain that has a protease site. Once the protease is expressed, xanthine oxidase would be trimmed, it would dimerize, and we would get a sudden burst of H2O2. So this is where I'm stuck, since I don't have enough experience. Is it worth it to try and express the mammalian xanthine oxidase in E. coli and hope it can be done relatively easily or should I start looking into strategies for turning bacterial xanthine oxidase on and off?
        • References? Yamaguchi et al[15] showed that they could express the human XO in E. coli, but they only looked for activity in vitro. Not clear that they'd have activity in vivo.
        • Doug Tischer 05:46, 18 May 2008 (EDT)Looks like it is very tricky to express mammalian xanthine oxidase in bacteria, mostly because of the molybdenum center. The paper above reported that only 4% of their expressed xanthine oxidase was active. I'm now thinking it might be best to take an enzyme that produces H2O2 that is naturally found in bacteria and is a homodimer (like glucose oxidase, I think). Then, express one of the monomers as a fusion protein on the cytoplasmic C-terminal tail of a integral membrane protein, linked by a linker region with a protease site. This setup would prevent dimerization until the monomers are released into the cytoplasm when the protease is expressed
        • Josh K. Michener 14:59, 18 May 2008 (EDT): Remember, try to make this an incremental progression, not a moon shot. Also, keep in mind that the simplest solution is the most likely to work. So the first step would be expression of an oxidase and measurable production of peroxide in vivo. I'd probably take a couple different oxidases (try the galactose oxidase[17], for instance, in addition to a glucose oxidase - that one's upstairs in the Arnold Lab) and just see how much peroxide you can make. Then see how well you can regulate it just with transcriptional regulation - try it in BL21(DE3)pLysS, for instance. You could probably do that in parallel with the protein engineering for your protease cascade, but don't rely on any given thing working.
    • Trigger by conjugation? [18, 19]

Conjugator of Death

  • Engineered cell constitutively primed to conjugate with other bacteria. The transfered plasmid contains a collection of genes encoding for cytotoxic proteins (ie. ccdB, antimicrobial peptides, etc.)
    • DB3.1 passing a plasmid with ccdB?
  • Question of how well interspecies conjugation occurs and whether the natural gut microbiota would be susceptible
  • Doug Tischer 03:06, 17 May 2008 (EDT)We could use the same trick the Peking team used to make a bacterial counter. The copy of the plasmid that our bacteria has would have transcriptional stops between the promoter and the toxic genes. Therefore no toxic products would be produced in our cells. However, upon conjugation the plasmid would only be partially replicated so as to omit the intervening transcriptional stops. Once the plasmid reaches the target cell the promoter would be in front of the toxic gene, producing the toxic proteins. Eventually, the target cell would die.

pH Control

  • Also need details

References

  1. Bernstein JR, Bulter T, and Liao JC. Transfer of the high-GC cyclohexane carboxylate degradation pathway from Rhodopseudomonas palustris to Escherichia coli for production of biotin. Metab Eng. 2008 May-Jul;10(3-4):131-40. DOI:10.1016/j.ymben.2008.02.001 | PubMed ID:18396082 | HubMed [bernstein]
  2. Asrar FM and O'Connor DL. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem. 2005 Oct;16(10):587-93. DOI:10.1016/j.jnutbio.2005.02.006 | PubMed ID:16081276 | HubMed [asrar]
  3. Camilo E, Zimmerman J, Mason JB, Golner B, Russell R, Selhub J, and Rosenberg IH. Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology. 1996 Apr;110(4):991-8. DOI:10.1053/gast.1996.v110.pm8613033 | PubMed ID:8613033 | HubMed [camilo]
  4. Bermingham A and Derrick JP. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays. 2002 Jul;24(7):637-48. DOI:10.1002/bies.10114 | PubMed ID:12111724 | HubMed [bermingham]
  5. Gabelli SB, Bianchet MA, Xu W, Dunn CA, Niu ZD, Amzel LM, and Bessman MJ. Structure and function of the E. coli dihydroneopterin triphosphate pyrophosphatase: a Nudix enzyme involved in folate biosynthesis. Structure. 2007 Aug;15(8):1014-22. DOI:10.1016/j.str.2007.06.018 | PubMed ID:17698004 | HubMed [gabelli]
  6. Suttie JW. The importance of menaquinones in human nutrition. Annu Rev Nutr. 1995;15:399-417. DOI:10.1146/annurev.nu.15.070195.002151 | PubMed ID:8527227 | HubMed [suttie]
  7. Jiang T, Mustapha A, and Savaiano DA. Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. J Dairy Sci. 1996 May;79(5):750-7. DOI:10.3168/jds.S0022-0302(96)76422-6 | PubMed ID:8792277 | HubMed [jiang]
  8. de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, and Schrezenmeir J. Probiotics--compensation for lactase insufficiency. Am J Clin Nutr. 2001 Feb;73(2 Suppl):421S-429S. DOI:10.1093/ajcn/73.2.421s | PubMed ID:11157352 | HubMed [devrese]
  9. Bochner BR, Huang HC, Schieven GL, and Ames BN. Positive selection for loss of tetracycline resistance. J Bacteriol. 1980 Aug;143(2):926-33. DOI:10.1128/jb.143.2.926-933.1980 | PubMed ID:6259126 | HubMed [bochner]
  10. Torres-Cruz J and van der Woude MW. Slipped-strand mispairing can function as a phase variation mechanism in Escherichia coli. J Bacteriol. 2003 Dec;185(23):6990-4. DOI:10.1128/JB.185.23.6990-6994.2003 | PubMed ID:14617664 | HubMed [phase]
  11. Süel GM, Garcia-Ojalvo J, Liberman LM, and Elowitz MB. An excitable gene regulatory circuit induces transient cellular differentiation. Nature. 2006 Mar 23;440(7083):545-50. DOI:10.1038/nature04588 | PubMed ID:16554821 | HubMed [fluct1]
  12. Acar M, Mettetal JT, and van Oudenaarden A. Stochastic switching as a survival strategy in fluctuating environments. Nat Genet. 2008 Apr;40(4):471-5. DOI:10.1038/ng.110 | PubMed ID:18362885 | HubMed [fluct2]
  13. Tiina M and Sandholm M. Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. Int J Food Microbiol. 1989 May;8(2):165-74. DOI:10.1016/0168-1605(89)90071-8 | PubMed ID:2561954 | HubMed [tiina]
  14. González-Flecha B and Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem. 1995 Jun 9;270(23):13681-7. DOI:10.1074/jbc.270.23.13681 | PubMed ID:7775420 | HubMed [gonzalez1]
  15. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, and Nishino T. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem. 2007 Apr;141(4):513-24. DOI:10.1093/jb/mvm053 | PubMed ID:17301077 | HubMed [yamaguchi]
  16. Stevens CR, Millar TM, Clinch JG, Kanczler JM, Bodamyali T, and Blake DR. Antibacterial properties of xanthine oxidase in human milk. Lancet. 2000 Sep 2;356(9232):829-30. DOI:10.1016/s0140-6736(00)02660-x | PubMed ID:11022933 | HubMed [stevens]
  17. Sun L, Petrounia IP, Yagasaki M, Bandara G, and Arnold FH. Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution. Protein Eng. 2001 Sep;14(9):699-704. DOI:10.1093/protein/14.9.699 | PubMed ID:11707617 | HubMed [sun]
  18. Mazodier P, Petter R, and Thompson C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol. 1989 Jun;171(6):3583-5. DOI:10.1128/jb.171.6.3583-3585.1989 | PubMed ID:2656662 | HubMed [mazodier]
  19. Berg G and Trevors JT. Bacterial conjugation between Escherichia coli and Pseudomonas spp. donor and recipient cells in soil. J Ind Microbiol. 1990 Apr-May;5(2-3):79-84. DOI:10.1007/BF01573856 | PubMed ID:1366680 | HubMed [berg]
  20. Ham TS, Lee SK, Keasling JD, and Arkin AP. A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol Bioeng. 2006 May 5;94(1):1-4. DOI:10.1002/bit.20916 | PubMed ID:16534780 | HubMed [fim]
  21. Holden N, Blomfield IC, Uhlin BE, Totsika M, Kulasekara DH, and Gally DL. Comparative analysis of FimB and FimE recombinase activity. Microbiology (Reading). 2007 Dec;153(Pt 12):4138-4149. DOI:10.1099/mic.0.2007/010363-0 | PubMed ID:18048927 | HubMed [holden]
  22. Gally DL, Rucker TJ, and Blomfield IC. The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol. 1994 Sep;176(18):5665-72. DOI:10.1128/jb.176.18.5665-5672.1994 | PubMed ID:7916011 | HubMed [gally]
  23. Rao S, Hu S, McHugh L, Lueders K, Henry K, Zhao Q, Fekete RA, Kar S, Adhya S, and Hamer DH. Toward a live microbial microbicide for HIV: commensal bacteria secreting an HIV fusion inhibitor peptide. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):11993-8. DOI:10.1073/pnas.0504881102 | PubMed ID:16040799 | HubMed [rao]
  24. Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, and Fraser CM. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science. 2003 Mar 28;299(5615):2071-4. DOI:10.1126/science.1080613 | PubMed ID:12663927 | HubMed [paulsen]
  25. Westendorf AM, Gunzer F, Deppenmeier S, Tapadar D, Hunger JK, Schmidt MA, Buer J, and Bruder D. Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. FEMS Immunol Med Microbiol. 2005 Mar 1;43(3):373-84. DOI:10.1016/j.femsim.2004.10.023 | PubMed ID:15708311 | HubMed [westendorf]
  26. Schultz M, Watzl S, Oelschlaeger TA, Rath HC, Göttl C, Lehn N, Schölmerich J, and Linde HJ. Green fluorescent protein for detection of the probiotic microorganism Escherichia coli strain Nissle 1917 (EcN) in vivo. J Microbiol Methods. 2005 Jun;61(3):389-98. DOI:10.1016/j.mimet.2005.01.007 | PubMed ID:15767015 | HubMed [schultz]
  27. Benson SA, Bremer E, and Silhavy TJ. Intragenic regions required for LamB export. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3830-4. DOI:10.1073/pnas.81.12.3830 | PubMed ID:6374667 | HubMed [benson]
  28. González-Flecha B and Demple B. Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. J Bacteriol. 1994 Apr;176(8):2293-9. DOI:10.1128/jb.176.8.2293-2299.1994 | PubMed ID:8157597 | HubMed [gonzalez2]
  29. Bentley R and Meganathan R. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev. 1982 Sep;46(3):241-80. DOI:10.1128/mr.46.3.241-280.1982 | PubMed ID:6127606 | HubMed [bentley]
All Medline abstracts: PubMed | HubMed