IGEM:Caltech/2008/Project/ROS: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 16: Line 16:
*"Conjugation of S. typhi with E. coli F+ carrying P1CM+ gave three types of S. typhi CMr clones: those which carry the whole P1CMphage, those with the PldCM element, and those with nontransferable CMr."<cite>kondo</cite>
*"Conjugation of S. typhi with E. coli F+ carrying P1CM+ gave three types of S. typhi CMr clones: those which carry the whole P1CMphage, those with the PldCM element, and those with nontransferable CMr."<cite>kondo</cite>
*Can get transfer of an F' plasmid from E. coli to Salmonella<cite>lenny</cite>
*Can get transfer of an F' plasmid from E. coli to Salmonella<cite>lenny</cite>
*[[User:Doug Tischer|Doug Tischer]] 21:12, 26 May 2008 (EDT)There exists a plasmid (pAT187) that can be transfered from E. coli to a wide range of gram-positive bacteria <cite>mazodier</cite>
*[[User:Doug Tischer|Doug Tischer]] 21:12, 26 May 2008 (EDT)There exists a plasmid (pAT187) that can be transfered from E. coli to a wide range of gram-positive bacteria <cite>Mazodier</cite>


==Specificity==
==Specificity==

Revision as of 18:16, 26 May 2008


iGEM 2008

Home        People        Project        Protocols        Notes        Ideas        Changes       


Conjugation

  • Can get conjugation from Salmonella to E. coli [1]
    • Papers seem to assume that conjugation is quick, and maintenance is the hard part (unless we engineer a shuttle vector). Doesn't address specificity, though.
    • Doug Tischer 21:12, 26 May 2008 (EDT)I'm not concerned about how well the recipient mantains the plasmid. In fact that could be a very good thing. If we use the approach where we spare every good bacteria by giving them a copy of the plasmid, then it would be VERY bad if even one of the cells of infectious bacteria got the plasmid, as they would be subsequently immune from attack.
  • "Conjugation of S. typhi with E. coli F+ carrying P1CM+ gave three types of S. typhi CMr clones: those which carry the whole P1CMphage, those with the PldCM element, and those with nontransferable CMr."[2]
  • Can get transfer of an F' plasmid from E. coli to Salmonella[3]
  • Doug Tischer 21:12, 26 May 2008 (EDT)There exists a plasmid (pAT187) that can be transfered from E. coli to a wide range of gram-positive bacteria [4]

Specificity

  • Phage tailspike proteins[5] are specific for Salmonella.

References

  1. Makanera A, Arlet G, Gautier V, and Manai M. Molecular epidemiology and characterization of plasmid-encoded beta-lactamases produced by Tunisian clinical isolates of Salmonella enterica serotype Mbandaka resistant to broad-spectrum cephalosporins. J Clin Microbiol. 2003 Jul;41(7):2940-5. DOI:10.1128/JCM.41.7.2940-2945.2003 | PubMed ID:12843024 | HubMed [makanera]
  2. Kondo E and Mitsuhashi S. Drug resistance of enteric bacteria. VI. Introduction of bacteriophage P1CM into Salmonella typhi and formation of PldCM and F-CM elements. J Bacteriol. 1966 May;91(5):1787-94. DOI:10.1128/jb.91.5.1787-1794.1966 | PubMed ID:5327907 | HubMed [kondo]
  3. Lenny AB and Margolin P. Locations of the opp and supX genes of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1980 Aug;143(2):747-52. DOI:10.1128/jb.143.2.747-752.1980 | PubMed ID:7009564 | HubMed [lenny]
  4. Mazodier P, Petter R, and Thompson C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol. 1989 Jun;171(6):3583-5. DOI:10.1128/jb.171.6.3583-3585.1989 | PubMed ID:2656662 | HubMed [Mazodier]
  5. Salgado CJ, Zayas M, and Villafane R. Homology between two different Salmonella phages: Salmonella enterica serovar Typhimurium phage P22 and Salmonella enterica serovar Anatum var. 15 + phageepsilon34. Virus Genes. 2004 Aug;29(1):87-98. DOI:10.1023/B:VIRU.0000032792.86188.fb | PubMed ID:15215687 | HubMed [salgado]
  6. Plainkum P, Fuchs SM, Wiyakrutta S, and Raines RT. Creation of a zymogen. Nat Struct Biol. 2003 Feb;10(2):115-9. DOI:10.1038/nsb884 | PubMed ID:12496934 | HubMed [Plainkum]
  7. Firbank SJ, Rogers MS, Wilmot CM, Dooley DM, Halcrow MA, Knowles PF, McPherson MJ, and Phillips SE. Crystal structure of the precursor of galactose oxidase: an unusual self-processing enzyme. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):12932-7. DOI:10.1073/pnas.231463798 | PubMed ID:11698678 | HubMed [Firbank]
  8. Sun L, Petrounia IP, Yagasaki M, Bandara G, and Arnold FH. Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution. Protein Eng. 2001 Sep;14(9):699-704. DOI:10.1093/protein/14.9.699 | PubMed ID:11707617 | HubMed [Sun]
  9. Uehara Y, Kikuchi K, Nakamura T, Nakama H, Agematsu K, Kawakami Y, Maruchi N, and Totsuka K. H(2)O(2) produced by viridans group streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns. Clin Infect Dis. 2001 May 15;32(10):1408-13. DOI:10.1086/320179 | PubMed ID:11317240 | HubMed [Uehara]
  10. Toomey D and Mayhew SG. Purification and characterisation of NADH oxidase from Thermus aquaticus YT-1 and evidence that it functions in a peroxide-reduction system. Eur J Biochem. 1998 Feb 1;251(3):935-45. DOI:10.1046/j.1432-1327.1998.2510935.x | PubMed ID:9490070 | HubMed [Toomey]
  11. Whittaker JW. The radical chemistry of galactose oxidase. Arch Biochem Biophys. 2005 Jan 1;433(1):227-39. DOI:10.1016/j.abb.2004.08.034 | PubMed ID:15581579 | HubMed [Whittaker]
All Medline abstracts: PubMed | HubMed