IGEM:Cambridge/2008

From OpenWetWare

< IGEM:Cambridge(Difference between revisions)
Jump to: navigation, search
(Turing Pattern Formation)
Current revision (10:09, 26 October 2008) (view source)
 
(35 intermediate revisions not shown.)
Line 1: Line 1:
<div id="mainpage">
<div id="mainpage">
-
<hr width="750px">
+
<hr width="826px">
-
<div id="about">
+
-
{{Cambridge08}}
+
-
</div>
+
-
<hr width="750px">
+
__NOTOC__
__NOTOC__
-
{|cellspacing="5" cellpadding="10" style="background:#000000; width: 750px;"
+
{|{{table}}
 +
 
 +
{|cellspacing="5"; width: 800px;"
|-valign="top"
|-valign="top"
-
|style="background:#000000"|
+
|style="background:#444444"|
 +
{{Cambridge08}}
 +
<html>
 +
<font style="color:#ffffff">
 +
<P align="justify">
-
<font style="color:#c9ffe5"> 'This year, Cambridge is working on three different projects! (could someone please edit this part to something of a more general introduction of our team?)
+
This year, the Cambridge iGEM team is working towards creating an integrated Bacterial Recombinant Artificial Intelligence Network (iBRAIN). Our concept is to model eukaryotic neural behaviour using populations of bacteria. We are looking at two main aspects of this concept: self-organisation using Turing pattern formation, and synaptic signal transduction using voltage output glutamate detection
 +
</html>
 +
[[iGEM:Cambridge/2008/Concept |<font style="color:#cccccc">(read more...)]]
-
==[[iGEM:Cambridge/2008/Notebook/Turing_Pattern_Formation|<font style="color:#c9ffe5">Turing Pattern Formation</font>]]==
+
<html>
-
[[Image:Struktur-e.gif|100px|left|Turing Patterns]]
+
<table width="740" border="0" cellspacing="20" style="background:#444444" align="center">
-
We plan to implement a simple two-component Reaction-Diffusion system in the gram-positive model organism ''Bacillus subtilis''. In 1952, Alan Turing famously described this system and suggested it as the basis for self-organization and pattern formation in biological systems. The simplest of these patterns, which we are planning to model in bacteria, mimic the spots and stripes seen on animal coats.  
+
  <tr>
-
We intend to use two well-characterized bacterial communication systems to generate this behavior. The agr peptide signalling system from ''S. aureus'' will serve as our activatory signal (pictured), while the lux system from ''V. fischeri'' will serve as our inhibitor. ''Bacillus subtilis'' serves as an excellent chassis for this project because of the ease with which chromosomal integration can be performed. This project will focus on a tight integration of modeling and experiment; we will test different promoter strengths and other variables, feed these system parameters into our multi-cell models, and then use those models to tweak the regulatory machinery that will control signal production.
+
    <td width="370"><a href="http://openwetware.org/wiki/IGEM:Cambridge/2008/Notebook/Turing_Pattern_Formation" class="noborder"><img src="http://openwetware.org/images/9/9d/Signalling_button.gif" alt="Signalling" width="363" height="236"></a></td>
 +
    <td width="200"><a href="http://openwetware.org/wiki/IGEM:Cambridge/2008/Notebook/Bacillus"><img src="http://openwetware.org/images/8/8e/Bacillus_button.gif" alt="Bacillus" width="363" height="236"></a></td>
 +
</tr>
 +
  <tr>
 +
  <td><a href="http://openwetware.org/wiki/IGEM:Cambridge/2008/Notebook/Voltage"><img src="http://openwetware.org/images/7/74/Voltage_button.gif" alt="Voltage" width="363" height="236"></a></td>
 +
  <td><a href="http://openwetware.org/wiki/IGEM:Cambridge/2008/Notebook/Modelling"><img src="http://openwetware.org/images/9/91/Modelling_button.gif" alt="Modelling" width="363" height="236"></a></td>
 +
    </tr>
 +
  </table>
 +
</div>
 +
</html>
 +
----
 +
[[IGEM:Cambridge/2008/PresentationOutline | <font face="verdana" style="color:#ffffff"> '''Poster & Presentation Outline''' </font>]]
 +
|}
-
==[[iGEM:Cambridge/2008/Notebook/Voltage|<font style="color:#c9ffe5"> Voltage Output</font>]]==
 
-
[[Image:800px-Cambridge_2008_voltage.jpg|190px|right|Schematic]]
 
-
The aim of this project is to work towards an interface between biological and electric systems. We hope to do this by measuring a voltage change due to the presence of a certain substance.
 
-
In the first instance, this substance will be glutamate, as it acts as a ligand for a prokaryotic gated potassium channel.
 
-
Our idea is to sequester K+ inside E.coli cells by using leak channel knock-out mutants, and over-expressing K+ influx pumps. Then, when glutamate is present it will open K+ channels, allowing an efflux of potassium and causing a small but measureable change in voltage in the medium.
 
-
{{clear}}
 
-
==[[IGEM:Cambridge/2008/Notebook/Magnetic_Bacteria|<font style="color:#c9ffe5">Magnetic Bacteria</font>]]==
 
-
We are investigating the formation of magnetosomes (membrane bound magnetite particles) in magnetotactic bacteria. This process is believed to take place in the following steps: i) production of invaginations along the inner membrane ii) uptake of iron into these invaginations iii) biomineralisation of the iron into magnetite crystals of a specific size and shape iv) axial alignment of the magnetosomes
 
-
This mechanism gives the bacteria the ability to align itself like a compass needle along geomagnetic field lines. We are attempting to engineer the uptake of soluble iron into membrane invaginations in E.coli, and stimulate formation of magnetite using genes from Magnetospirillum. '</font>
+
===Sponsors===
-
|}
+
----
 +
<html>
 +
<table width="700" border="0" cellspacing="3">
 +
  <tr>
 +
    <td width="200"><a href="http://www.labtech.co.uk/" class="noborder"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/labtech.jpg" alt="labtech" width="131" height="17"></a></td>
 +
    <td width="200"><a href="http://www.clontech-europe.com/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/clontech.jpg" alt="Clontech" width="112" height="34"></a></td>
 +
  <td width ="200"><a href="http://www.expressys.com/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/expressys.jpg" alt="expressys" width="112" height="70"></a></td>
 +
</tr>
 +
  <tr>
 +
  <td><a href="http://www.invitrogen.com/site/us/en/home.html"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/invirtogen.jpg" alt="invitrogen" width="160" height="25"></a></td>
 +
  <td><a href="http://www.medical-solutions.co.uk/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/geneservice.jpg" alt="geneservice" width="140" height="26"></a></td>
 +
    <td><a href="http://www.bioscience.co.uk/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/cambridgebioscience.jpg" alt="cambridge bioscience" width="157" height="42"></a></td>
 +
</tr>
 +
  <tr>
 +
    <td><a href="http://www.zymoresearch.com/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/zymoresearch.jpg" alt="zymo research" width="135" height="45"></a></td>
 +
    <td><a href="http://www.vwr.com/index.htm"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/vwr.jpg" alt="VWR" width="140" height="47"></a></td>
 +
  <td><a href="http://www.microzone.co.uk/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/microzone.gif" alt="Microzone" width="131" height="44"></a></td>
 +
</tr>
 +
  <tr>
 +
    <td><a href="http://www.finnzymes.com/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/finnzymes.jpg" alt="Finnzymes" width="131" height="43"></a></td>
 +
      <td><a href="http://www.fisher.co.uk/"><img src="http://www.gen.cam.ac.uk/Images/logos/iGEMsponsors/fisherscientific.jpg" alt="Fisher Scientific" width="132" height="33" /></a></td>
 +
    <td><a href="http://www.dna20.com/"><img src="http://openwetware.org/images/8/88/Dna20_logo.jpg" alt="DNA 2.0" width="132" height="66" /></a></td>
 +
  </tr>
 +
</table>
 +
</div>
 +
</html>
 +
[[iGEM:Cambridge/2008/Help | Help]]
 +
</font>
 +
|}

Current revision


This year, the Cambridge iGEM team is working towards creating an integrated Bacterial Recombinant Artificial Intelligence Network (iBRAIN). Our concept is to model eukaryotic neural behaviour using populations of bacteria. We are looking at two main aspects of this concept: self-organisation using Turing pattern formation, and synaptic signal transduction using voltage output glutamate detection (read more...)

Signalling Bacillus
Voltage Modelling


Poster & Presentation Outline


Sponsors



labtech Clontech expressys
invitrogen geneservice cambridge bioscience
zymo research VWR Microzone
Finnzymes Fisher Scientific DNA 2.0


Help


Views
Personal tools