IGEM:Cambridge/2008/Notebook/Magnetic Bacteria

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Autocreated Lab Notebook name=IGEM:Cambridge/2008/Notebook/Magnetic Bacteria, content from MediaWiki:IGEMProjectContentDefault)
Line 13: Line 13:
|-  
|-  
|colspan="2"|
|colspan="2"|
-
==Description/Abstract==
+
==Aim==
-
* Place short description of project or notes regarding this project
+
 
 +
The aim of our project is to generate magnetic organelles in E.coli and yeast that resemble magnetosomes naturally formed in magnetotactic bacteria. Magnetosomes are inner-membrane invaginations that contain a single-domain magnetic crystal of magnetite (Fe3O4) or greigite (Fe3S4). These magnetosomes help magnetotactic bacteria to orient themselves in microaerobic conditions, and avoid oxygen-rich environments.
 +
 
 +
==Applications==
 +
 
 +
===The ability to form small synthetic particles under closely controlled synthesis conditions.=== Although small magnetic particles can be formed synthetically by following various routes, these particles are non-uniform, often not fully crystalline and compositionally nonhomogeneous. The biomineralisation route provides a way to produce highly uniform magnetite crystals without the high temperatures, pH and pressures required in industry. 
 +
 
 +
The potential applications are in the field of bioremediation, where E.coli cells could be made to take up contaminants, and then isolated by magnetic fields. Also, a further development would be to synthesise free magnetosomes that can be conjugated to antibodies and used as a simple tag that can be monitored by MRI.
 +
 
 +
This is a multistep process. First, the cell is grown in iron-rich media (see below) to allow iron uptake. Then, invaginations of the inner membrane is induced by expression of the b subunit of the F1F0 ATP synthase. Iron uptake into the membrane folds is mediated by the product of the Magnetospirillum magnetotacticum gene magA, which functions as a proton/iron antiporter. Finally, biomineralisation is achieved by a small protein encoded in the genomic 'magnetosome island'.
 +
 
-
* Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec porta commodo tellus. Nam a est eget libero mollis tincidunt. Aliquam purus. Quisque nulla ligula, facilisis in, pulvinar sed, molestie a, quam. Vestibulum at pede. In in sem eget odio eleifend placerat. Phasellus ultricies felis quis sapien. Etiam molestie volutpat quam. Praesent pulvinar scelerisque mi. Nam mi urna, fringilla eu, mattis sed, venenatis id, nunc. Maecenas velit eros, congue ut, placerat in, ornare vel, sem. Aenean porta enim sit amet felis gravida posuere. Phasellus faucibus nibh et orci.
 
==Notes==
==Notes==

Revision as of 09:12, 29 July 2008

Search this project

Customize your entry pages

Aim

The aim of our project is to generate magnetic organelles in E.coli and yeast that resemble magnetosomes naturally formed in magnetotactic bacteria. Magnetosomes are inner-membrane invaginations that contain a single-domain magnetic crystal of magnetite (Fe3O4) or greigite (Fe3S4). These magnetosomes help magnetotactic bacteria to orient themselves in microaerobic conditions, and avoid oxygen-rich environments.

Applications

===The ability to form small synthetic particles under closely controlled synthesis conditions.=== Although small magnetic particles can be formed synthetically by following various routes, these particles are non-uniform, often not fully crystalline and compositionally nonhomogeneous. The biomineralisation route provides a way to produce highly uniform magnetite crystals without the high temperatures, pH and pressures required in industry.

The potential applications are in the field of bioremediation, where E.coli cells could be made to take up contaminants, and then isolated by magnetic fields. Also, a further development would be to synthesise free magnetosomes that can be conjugated to antibodies and used as a simple tag that can be monitored by MRI.

This is a multistep process. First, the cell is grown in iron-rich media (see below) to allow iron uptake. Then, invaginations of the inner membrane is induced by expression of the b subunit of the F1F0 ATP synthase. Iron uptake into the membrane folds is mediated by the product of the Magnetospirillum magnetotacticum gene magA, which functions as a proton/iron antiporter. Finally, biomineralisation is achieved by a small protein encoded in the genomic 'magnetosome island'.


Notes

  • Place some notes here for visitors
  • Example: Next team meeting on Tuesday, June 18th! Be there!


Recent changes




Personal tools