IGEM:Cambridge/2008/Notebook/Voltage/Gene Design: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 45: Line 45:
*B0030 is the strongest(15bp length), B0031 medium(14bp) and B0032 weakest(13bp).  
*B0030 is the strongest(15bp length), B0031 medium(14bp) and B0032 weakest(13bp).  
*Investigating three will help us determine the optimum levels of Kdp expression.
*Investigating three will help us determine the optimum levels of Kdp expression.


==Amplification from E.coli MG1655==
==Amplification from E.coli MG1655==
Line 64: Line 66:


[[Image:osmy_b0030 pcr prod.JPG |left|260px]][[Image:osmy_b0031 pcr prod.JPG|260px]][[Image:osmy_b0032 pcr prod.JPG |260px]]
[[Image:osmy_b0030 pcr prod.JPG |left|260px]][[Image:osmy_b0031 pcr prod.JPG|260px]][[Image:osmy_b0032 pcr prod.JPG |260px]]


==Integration into Vector==
==Integration into Vector==

Revision as of 01:26, 5 September 2008

KdpF-C Biobrick

Gene Selection

  • Kdp is a well documented P-Type K+ ATPase found naturally in E.coli, used to actively pump ions into the cell.
  • It consists of a 6-gene operon: F,A,B,C,D,E Where F-C are the functional membrane protein subunits, and D-E comprises a bacterial 2-component regulatory system.

  • Literature shows that Kdp acts as a high-affinity transport system, and works most effectively at low external potassium concentrations, where a change in ion flux would be most likely to produce a measurable voltage difference.
  • The D-E 2-component system consists of a membrane protein turgidity sensor and a transcription factor. It controls Kdp operon expression in vivo, by reducing gene expression when turgor is high.
  • Since we wish to over-express Kdp, we decided not to include the regulatory system in our biobrick. (Osmotic buffering would be used instead.)

Amplification from E.coli MG1655

  • This was performed via PCR amplification of the genome template using the following primers:
         -Forward: ATAT GAATTC ATAT TCTAGA TGAGTGCAGGCGTGATAACCGGCGTATT 
                        EcoRI        XbaI
         -Reverse: CTCT CTGCAG CTCT ACTAGT TTATTCATCAAGTTTATCCAGCGCCAGAT
                        PstI         SpeI 
  • Primer overhangs incorporated the biobrick prefix and suffix into the section, restriction sites shown in bold .
  • The result of this PCR is shown below:

Integration into Vector

  • The vector used was low copy-number plasmid pSB4C5, with chloramphenicol resistance and a death gene as selection markers.
  • Kdp PCR product and pSB4C5 were both cut with EcoRI & SpeI, (vector backbone was dephosphorylated to prevent circularisation) then ligation into the vector can occur as shown.
  • . . . . . . . . . . . . . . . . . . . . . . . .
  • Note: pSB4C5_Kdp biobrick plasmid has no promoter/RBS and so Kdp is not expressed in transformants.

Promoter+RBS Biobrick

Promoter and RBS Selection

Promoter

  • The promoter chosen for use with Kdp was OsmY (Part BBa_J45992).
  • It is a stationary phase promoter, and since we require high cell densities in our final "voltage measurement" medium, we want Kdp to only be expressed in stationary phase.
  • This will reduce the metabolic and osmotic stress on dividing cells in exponential phase.

Ribosome Binding Site

  • Three different strength RBSs were investigated, B0030, B0031 and B0032.
  • B0030 is the strongest(15bp length), B0031 medium(14bp) and B0032 weakest(13bp).
  • Investigating three will help us determine the optimum levels of Kdp expression.


Amplification from E.coli MG1655

  • These parts were extracted using PCR from the Registry of Standard Biological Parts. However, the RBS biobricks are so small that we built their sequences into the reverse primers.
  • The primer sequences used are:
         -Forward: CTAT GAATTC ATAT TCTAGA GCTGGCACAGGAACGTTATCC (All OsmY-RBS constructs)
                        EcoRI        XbaI
         -B0030 Reverse: CGCG CTGCAG CTCT ACTAGT (TTTCTCCTCTTTAAT)TTGTTAAATATAGA
                               PstI        SpeI      B0030
         
         -B0031 Reverse: CTCT CTGCAG CTCT ACTAGT (GGTTTCCTGTGTGA)TTGTTAAATATAGAT
                               PstI        SpeI      B0031
         
         -B0032 Reverse: CTCT CTGCAG CTCT ACTAGT (CTTTCCTGTGTGA)TTGTTAAATATAGATCA
                               PstI        SpeI      B0032
  • PCR with these primers creates three different promoter-RBS biobrick parts (OsmY-B003x):

Integration into Vector

  • The vector used was low copy-number plasmid pSB4C5, with chloramphenicol resistance and a death gene as selection markers.
  • Kdp PCR product and pSB4C5 were both cut with EcoRI & SpeI, (vector backbone was dephosphorylated to prevent circularisation) then ligation into the vector can occur as shown.

GluR0 Biobrick

Gene Selection

DNA Synthesis