IGEM:Harvard/2006/Cyanobacteria

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Presentations)
Line 2: Line 2:
__TOC__
__TOC__
 +
==Introduction==
 +
 +
Welcome to the lab notebook for the Cyanobacteria project! The goal of our team, composed of four members, is to reconstruct the cyanobacterial circadian oscillator system into E. coli. Three proteins, KaiA, B, and C, have been shown to have an in-vitro phosphorylation state oscillation (Nakajima et al. 2005) by transcriptional-translational independent methods. If this system can be reconstituted in E. coli, there are two important applications:
 +
#*Synthetic Biology: Creating a functional, oscillating set of proteins is the next logical step from the synthetic "repressilator" system engineered by Elowitz et al. (2000). Although a good proof of concept, the "repressilator" lacks the stability needed from a robust oscillator such as the naturally evolved cyanobacterial oscillator. This robust oscillator could prove useful in an eventual biocircuit.
 +
#*Circadian Biology: Cyanobacteria are the simplest model organisms for the study of circadian oscillation. Although circadian oscillation has been fairly well characterized, less is understood at the molecular level. By porting the oscillation system into E. coli, one can begin to understand more precisely the pathways involved in the genomic oscillation of cyanobacteria.
 +
==Construct Planning==
==Construct Planning==

Revision as of 14:58, 27 October 2006


Contents

Introduction

Welcome to the lab notebook for the Cyanobacteria project! The goal of our team, composed of four members, is to reconstruct the cyanobacterial circadian oscillator system into E. coli. Three proteins, KaiA, B, and C, have been shown to have an in-vitro phosphorylation state oscillation (Nakajima et al. 2005) by transcriptional-translational independent methods. If this system can be reconstituted in E. coli, there are two important applications:

    • Synthetic Biology: Creating a functional, oscillating set of proteins is the next logical step from the synthetic "repressilator" system engineered by Elowitz et al. (2000). Although a good proof of concept, the "repressilator" lacks the stability needed from a robust oscillator such as the naturally evolved cyanobacterial oscillator. This robust oscillator could prove useful in an eventual biocircuit.
    • Circadian Biology: Cyanobacteria are the simplest model organisms for the study of circadian oscillation. Although circadian oscillation has been fairly well characterized, less is understood at the molecular level. By porting the oscillation system into E. coli, one can begin to understand more precisely the pathways involved in the genomic oscillation of cyanobacteria.

Construct Planning

Constructs we plan to create.
Constructs we plan to create.


Lengths

From VF2 to VR (BioBrick primers):

  • KaiA + J04500: 1406 bp
  • KaiB + J04500: 859 bp
  • KaiC + J04500: 2110 bp

Synthesis

Synthesis

Agenda

See image at right for our long-term project outline.

Long-term project outline
Long-term project outline

Click here for our current agenda

Kai Gene sizes

  • KaiA size: 855bp
    • 903bp with BioBrick ends
  • KaiB: 309bp
    • 357bp with BioBrick ends
  • KaiC: 1560bp

BioBricks Used

  • <bbpart>BBa_J04450</bbpart>
    • RFP device
    • Insert size: 1069bp
    • [pSB1A2]
      • High-copy, AmpR
      • Size: 2079bp
  • <bbpart>BBa_J04500</bbpart>
    • Lac promoter + RBS
    • Insert size: 220bp
    • [pSB1AK3]
      • High-copy, AmpR, KanR
      • Insert size: 3189bp
  • [pSB4A3]
    • Low-copy, AmpR
    • Insert size: 3339 bp
  • <bbpart>BBa_R0010</bbpart> + <bbpart>BBa_E0241</bbpart>
    • GFP device
    • Insert size: 995 bp

Presentations

Team Members

Recent Changes

Personal tools