IGEM:Harvard/2006/DNA nanostructures: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
mNo edit summary
 
(97 intermediate revisions by 7 users not shown)
Line 1: Line 1:
==Roadblocks and Solutions==
<div class="tabs-blue">
#Big Concept
<ul>
#*Is this really better than currently available antithrombins?
<li id="current">[[IGEM:Harvard/2006/DNA nanostructures|Project Overview]]</li>
#**Not in efficacy, necessarily.  But it's more generalizable, engineerable, and whether or not the triggerability and the bioavailability features work in our favor is something drug companies spend years testing.  In essence, the thrombin problem is just an example application of the greater idea of a triggerable drug box - it is our proof of concept.
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Designs|Designs]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Notebook|Notebook]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Protocols|Protocols]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Presentations|Presentations]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Literature|Literature]]</li>
</ul>
</div>
<br style="clear:both">


#Nitty-Gritty Details
#*How is this going to stay in the body?
#**The "lock," or the box structure, will be covered in a non-immunologic polymer, such as PEG (REFERENCE) or PLGA (REFERENCE), allowing it to traverse the bloodstream, or perhaps eventually enter the cell (REFERENCE) and drop cargo.  <br>Part of the functionality of the "key," or the oligo clasp-opening strand, is that it will be quickly cleared if it does not bind the lock within the time that naked DNA is cleared, approximately 5-10 minutes.  This allows a quick pulse-controlled attack against thrombin, though the possibility of a constant stream of key time-released or released by IV is not impossible.  <br>And the opened structures will be cleared, thrombin attached, thus permanently and immediately lowering the levels of that protein from the blood.


#*How big is this stuff going to be anyway?  And how much thrombin will it bind?
==Project Overview==
#**The thrombin-aptamer is approximately 3nm long, 2nm wide. If the open-faced tetrahedron is used, it could be designed to be big enough to just fit one aptamer within, or four aptamers, one on each side.  The limiting factor here is the need to keep the aptamer within the confines of the structure.  However, my personal preference is for a closed-face structure because, w/ an open-faced one which needs to be constrained based on geometry, the odds of difficulty folding are higher. 
*Our goal is to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
*The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
*As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
*We expect that molecular containers could have several interesting scientific and clinical applications, such as
**Drug and gene delivery
**Bio-marker scavenging (early detection of biomarkers)
**Directed evolution (compartmentalized selections)
**Using multiplexing for combinatorial chemical synthesis
**Capture and stabilization of multiprotein complexes
**Protein folding (chaperones)
**Cell sorting


#*Is there a chance that the aptamer sequence will mistakenly bind the scaffold or oligos?
==Working Team Members==
#**ClustalW says chances are not that great.
*[[User:TChan|Tiffany Chan]] ([[User_talk:TChan|talk]], [[Special:Contributions/TChan|edits]])
*[[User:Kfifer|Katherine Fifer]] ([[User_talk:Kfifer|talk]], [[Special:Contributions/Kfifer|edits]])
*[[User:Vlau|Valerie Lau]] ([[User_talk:Vlau|talk]], [[Special:Contributions/Vlau|edits]])
*[[User:Matthewmeisel|Matthew Meisel]] ([[User_talk:Matthewmeisel|talk]], [[Special:Contributions/Matthewmeisel|edits]])
*[[User:Lhahn|Lewis Hahn]] ([[User_talk:Lhahn|talk]], [[Special:Contributions/Lhahn|edits]])
*TA: [[User:ShawnDouglas|Shawn Douglas]] ([[User_talk:ShawnDouglas|talk]], [[Special:Contributions/ShawnDouglas|edits]])


==Presentation Outline==
==Recent Changes==
*'''Specific goal(s) of the project'''
{{Special:Recentchanges/b=IGEM:Harvard/2006/DNA_nanostructures/&limit=20}}
**Proof of concept.  The idea of a generalizable, injectable, triggerable, clearable, simple-to-engineer protein manipulation system is a goal well worth working towards, as is building a useful DNA nanostructure. 
**'''state an existing problem and the impact if we solve it'''
***Anti-thrombotics are needed for patients who have a tendency towards thrombosis, embolisms, and stroke - a highly-molar-controlled, triggerable form could be extremely helpful for patients that demand fast action and close regulation.
 
*'''Initial ideas for how to solve the problem'''
**'''Unique/interesting features of our approach'''
***Generalizability: Because DNA aptamer designed to bind a protein in the bloodstream can be easily engineered into the structure, the design can be generalized simply.
***Molar-Triggerability: Because the strand-replacement-clasp system functions as a "lock and key" on a 1:1 molar level, tight control of thrombin inactivation and pulse-inactivation (due to the quick 5-10 min clearance of "key" strand) are obtainable.
***Coolness Factor: Because it's iGEM, and it'll look awesome.
***Novelness: Even if we fail on further levels, simply building a box is novel
 
**'''What pieces of the project do you already have a good idea that they can & will work?  what is novel?'''
***Jack-able:
****Tetrahedron concept, and possibly sequence, if we go w/ the open-surface model (a la http://www.sciencemag.org.ezp1.harvard.edu/cgi/content/full/310/5754/1661/FIG1)
****Thrombin-aptamer sequence
****Endo-incorporation of aptamer into oligo sequences (a la http://www3.interscience.wiley.com.ezp1.harvard.edu/cgi-bin/fulltext/110526995/PDFSTART)
****DNA tweezer strand-replacement sequence - though we can easily create one ourselves to hold a vertex of the tetrahedron together
***Novel:
****Design and sequence, if not going with the open-tetrahedron
 
*'''Logistics'''
**'''outline of project milestones and suggestions for division of labor'''
#Design a box with strand-displaced clasp (group) - we should design at least two different kinds of boxes.
#Write code to design box with oligo staples without aptamers, for testing, and with aptamers; (4 people at least, 2 per box)
#Test closed box w/o aptamers to see if it actually opens (gel studies should be good enough to show this).
##Simultaneously, test closed box w/ aptamers to see if it still opens (2 people at least).
#Test closed box w/o aptamers to see if it opens in presence of thrombin. (2 people at least)
##Simultaneously, test open box to see if aptamers on inner box surface actually bind thrombin (again, gel studies - or perhaps Western blot) (1 person).
#Test closed boxes w/ aptamers in in vitro system with thrombin, adding strand-displacement oligo after.  See if it sequesters (1 person)
#PEG-enclosure?
 
*'''Costs'''
**$$$
**Time
*'''Potential iGEM problems'''
**articulating how this fits into iGEM
**BioBricks
*'''Brief Summary'''
 
**We are trying to solve problem X with approach'''
**'''if we are successful, what will we be able to deliver in November'''
***Openable, triggerable box that binds thrombin and has a chance of being biostable
**'''if we are unsuccessful, what will we be able to deliver in November'''
***Box designs, possibly a non-opening box
 
==Bibliography==
 
===Thrombin===
<biblio>
# thr1 pmid=15170395
# thr2 pmid=6996572 
# thr3 pmid=1931959
</biblio>
<br>
 
===Thrombin-Aptamer===
<biblio>
# tha1 pmid=8107090
# tha2 pmid=15945116
</biblio>
<br>
 
===DNA Bioavailability===
<biblio>
# bioa1 pmid=16146351
# bioa2 pmid=11336355
# bioa3 pmid=7667185
</biblio>
<br>
 
===PEG Covering===
<biblio>
# peg1 pmid=15771224
# peg2 pmid=12922153
</biblio>
<br>
 
===Tetrahedral Structure===
<biblio>
# tet1 pmid=16339440
# tet2 pmid=2017259
</biblio>
 
===Strand Displacement Clasp===
<biblio>
# sdc1 pmid=11308883
</biblio>

Latest revision as of 18:15, 28 October 2006



Project Overview

  • Our goal is to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
  • The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
  • As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
  • We expect that molecular containers could have several interesting scientific and clinical applications, such as
    • Drug and gene delivery
    • Bio-marker scavenging (early detection of biomarkers)
    • Directed evolution (compartmentalized selections)
    • Using multiplexing for combinatorial chemical synthesis
    • Capture and stabilization of multiprotein complexes
    • Protein folding (chaperones)
    • Cell sorting

Working Team Members

Recent Changes

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

25 April 2024

     11:28  BioMicroCenter:Tecan Freedom Evo diffhist −35 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     11:27 Upload log Noelani Kamelamela talk contribs uploaded a new version of File:Chemagic360.jpg
     00:22  The paper that launched microfluidics - Xi Ning‎‎ 7 changes history +4,723 [Xning098‎ (7×)]
     
00:22 (cur | prev) −97 Xning098 talk contribs
     
00:18 (cur | prev) +14 Xning098 talk contribs (→‎Summary)
     
00:11 (cur | prev) +1 Xning098 talk contribs (→‎Introduction)
     
00:11 (cur | prev) +1 Xning098 talk contribs (→‎Introduction)
     
00:11 (cur | prev) 0 Xning098 talk contribs (→‎References)
     
00:08 (cur | prev) +4 Xning098 talk contribs (→‎Significance)
     
00:07 (cur | prev) +4,800 Xning098 talk contribs

24 April 2024

     22:50  WAKNA:Basics‎‎ 8 changes history +610 [Berthold Drexler‎ (8×)]
     
22:50 (cur | prev) +136 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
22:47 (cur | prev) +238 Berthold Drexler talk contribs (→‎Neuromonitoring allgemein)
     
22:33 (cur | prev) +151 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
22:31 (cur | prev) 0 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
22:30 (cur | prev) +1 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
22:30 (cur | prev) +313 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
06:23 (cur | prev) +192 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
06:21 (cur | prev) −421 Berthold Drexler talk contribs (→‎Sonstige)
     18:35  User:Yanbin Huang‎‎ 2 changes history +25 [Yanbin Huang‎ (2×)]
     
18:35 (cur | prev) +13 Yanbin Huang talk contribs (→‎Peer-Reviewed Publications)
     
18:34 (cur | prev) +12 Yanbin Huang talk contribs (→‎Peer-Reviewed Publications)
     17:49  Hu‎‎ 2 changes history +28 [Hugangqing‎ (2×)]
     
17:49 (cur | prev) +18 Hugangqing talk contribs
     
17:48 (cur | prev) +10 Hugangqing talk contribs
     08:14  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 6 changes history +394 [Rcostello‎ (6×)]
     
08:14 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:13 (cur | prev) −14 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) −1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) −1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) +110 Rcostello talk contribs (→‎References)
     
08:11 (cur | prev) +299 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     08:02 Upload log Rcostello talk contribs uploaded File:Pick and Place.mp4

23 April 2024

     15:33  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 6 changes history +837 [Rcostello‎ (6×)]
     
15:33 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:33 (cur | prev) +203 Rcostello talk contribs (→‎References)
     
15:31 (cur | prev) −2 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:29 (cur | prev) −474 Rcostello talk contribs (→‎References)
     
15:29 (cur | prev) +845 Rcostello talk contribs (→‎MEMS Devices)
     
15:14 (cur | prev) +264 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     11:58  BioMicroCenter:People‎‎ 2 changes history +30 [Lttran‎ (2×)]
     
11:58 (cur | prev) −4 Lttran talk contribs (→‎BioMicro Center Staff)
     
11:49 (cur | prev) +34 Lttran talk contribs (→‎BioMicro Center Staff)
     11:46 Upload log Lttran talk contribs uploaded File:SKR BMC.jpg

22 April 2024

     19:28  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 2 changes history −2 [Rcostello‎ (2×)]
     
19:28 (cur | prev) −2 Rcostello talk contribs (→‎Nanowires)
     
19:26 (cur | prev) 0 Rcostello talk contribs (→‎Biology-Inspired Solution)
     19:01  Microfluidic Sensing- Microfluidic Biosensors- Xiao Fan‎‎ 11 changes history +45 [Khiemle‎ (11×)]
     
19:01 (cur | prev) +14 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
19:00 (cur | prev) +7 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
19:00 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:59 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:58 (cur | prev) −2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:58 (cur | prev) +2 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) +1 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) −9 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:57 (cur | prev) −40 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:57 (cur | prev) +2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:56 (cur | prev) +34 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)