IGEM:Harvard/2006/DNA nanostructures: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
mNo edit summary
 
(95 intermediate revisions by 7 users not shown)
Line 1: Line 1:
==Why THIS Antithrombotic?==
<div class="tabs-blue">
* How is this better than existing antithrombotics (heparin, warfarin, and thrombolitics)?
<ul>
<li id="current">[[IGEM:Harvard/2006/DNA nanostructures|Project Overview]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Designs|Designs]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Notebook|Notebook]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Protocols|Protocols]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Presentations|Presentations]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Literature|Literature]]</li>
</ul>
</div>
<br style="clear:both">


**'''Heparin:''' may induce immunological thrombocytopenia (we don't know if ours will or not), tends to bind to plasma proteins (ours won't - see PMID: 8107090 below).


**'''Warfarin (Coumadin):''' small therapeutic window (ours will work molarly, thus we'll have to worry about not having ENOUGH, rather than having too much, once "we" (ie. pharmaceuticals) get a baseline curve in the human), and thus constant clinical supervision (the oligo keys will clear so fast, it shouldn't be a problem).
==Project Overview==
*Our goal is to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
*The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
*As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
*We expect that molecular containers could have several interesting scientific and clinical applications, such as
**Drug and gene delivery
**Bio-marker scavenging (early detection of biomarkers)
**Directed evolution (compartmentalized selections)
**Using multiplexing for combinatorial chemical synthesis
**Capture and stabilization of multiprotein complexes
**Protein folding (chaperones)
**Cell sorting


**'''Both:''' food and drug interactions (ours probably won't - aptamer has been tested against some other control proteins, and it doesn't bind them much - again, see PMID: 8107090)
==Working Team Members==
*[[User:TChan|Tiffany Chan]] ([[User_talk:TChan|talk]], [[Special:Contributions/TChan|edits]])
*[[User:Kfifer|Katherine Fifer]] ([[User_talk:Kfifer|talk]], [[Special:Contributions/Kfifer|edits]])
*[[User:Vlau|Valerie Lau]] ([[User_talk:Vlau|talk]], [[Special:Contributions/Vlau|edits]])
*[[User:Matthewmeisel|Matthew Meisel]] ([[User_talk:Matthewmeisel|talk]], [[Special:Contributions/Matthewmeisel|edits]])
*[[User:Lhahn|Lewis Hahn]] ([[User_talk:Lhahn|talk]], [[Special:Contributions/Lhahn|edits]])
*TA: [[User:ShawnDouglas|Shawn Douglas]] ([[User_talk:ShawnDouglas|talk]], [[Special:Contributions/ShawnDouglas|edits]])


**All of this info is from:
==Recent Changes==
 
{{Special:Recentchanges/b=IGEM:Harvard/2006/DNA_nanostructures/&limit=20}}
<biblio>
anti1 pmid=16218489
</biblio>
 
 
* Why not just naked aptamers?
 
** clearance too quick, but ours will be hidden until the box is opened - hopefully it'll bind fast enough to not make its easy clearance a problem
 
***"Thrombin is the most obvious target for the generation of both anticoagulant and antithrombotic compounds. Bock et al. (19) generated a 15 nucleotide DNA-based thrombin aptamer that binds thrombin with moderate affinity (apparent Kd ~10–7 M) and can prolong the clotting time of human plasma. To take advantage of its rapid clearance (in vivo half-life of approximately 1–2 minutes), the thrombin DNA aptamer was developed largely as an anticoagulant for use in surgical indications requiring regional anticoagulation of an extracorporeal circuit. When administered by constant infusion, this molecule was successfully used to maintain the patency of an extracorporeal circuit in sheep and was substituted for heparin in a canine cardiopulmonary bypass model (20, 21). Furthermore, because of its rapid clearance, once infusion of the aptamer was stopped, no reversal of the anticoagulant activity of this molecule was required. Based on its ability to inhibit clot-bound thrombin and platelet thrombus formation in an ex vivo whole artery angioplasty model, this aptamer also exhibited potential as a novel antithrombotic (22). However, for this thrombin aptamer to be successfully tested in animal models of arterial thrombosis, it would probably be necessary to modify it to improve its circulating half-life." --- White et al., 2000
 
<biblio>
napt1 pmid=11032851
</biblio>
 
==Roadblocks and Solutions==
#Big Concept
#*Is this really better than currently available antithrombins?
#**Not in efficacy, necessarily.  But it's more generalizable, engineerable, and whether or not the triggerability and the bioavailability features work in our favor is something drug companies spend years testing.  In essence, the thrombin problem is just an example application of the greater idea of a triggerable drug box - it is our proof of concept.
 
#Nitty-Gritty Details
#*How is this going to stay in the body?
#**The "lock," or the box structure, will be covered in a non-immunologic polymer, such as PEG (REFERENCE) or PLGA (REFERENCE), allowing it to traverse the bloodstream, or perhaps eventually enter the cell (REFERENCE) and drop cargo.  <br>Part of the functionality of the "key," or the oligo clasp-opening strand, is that it will be quickly cleared if it does not bind the lock within the time that naked DNA is cleared, approximately 5-10 minutes.  This allows a quick pulse-controlled attack against thrombin, though the possibility of a constant stream of key time-released or released by IV is not impossible.  <br>And the opened structures will be cleared, thrombin attached, thus permanently and immediately lowering the levels of that protein from the blood.
 
#*How big is this stuff going to be anyway?  And how much thrombin will it bind?
#**The thrombin-aptamer is approximately 3nm long, 2nm wide.  If the open-faced tetrahedron is used, it could be designed to be big enough to just fit one aptamer within, or four aptamers, one on each side.  The limiting factor here is the need to keep the aptamer within the confines of the structure.  However, my personal preference is for a closed-face structure because, w/ an open-faced one which needs to be constrained based on geometry, the odds of difficulty folding are higher. 
 
#*Is there a chance that the aptamer sequence will mistakenly bind the scaffold or oligos?
#**ClustalW says chances are not that great.
 
==Presentation Outline==
*'''Specific goal(s) of the project'''
**Proof of concept.  The idea of a generalizable, injectable, triggerable, clearable, simple-to-engineer protein manipulation system is a goal well worth working towards, as is building a useful DNA nanostructure. 
**'''state an existing problem and the impact if we solve it'''
***Anti-thrombotics are needed for patients who have a tendency towards thrombosis, embolisms, and stroke - a highly-molar-controlled, triggerable form could be extremely helpful for patients that demand fast action and close regulation.
 
*'''Initial ideas for how to solve the problem'''
**'''Unique/interesting features of our approach'''
***Generalizability: Because DNA aptamer designed to bind a protein in the bloodstream can be easily engineered into the structure, the design can be generalized simply.
***Molar-Triggerability: Because the strand-replacement-clasp system functions as a "lock and key" on a 1:1 molar level, tight control of thrombin inactivation and pulse-inactivation (due to the quick 5-10 min clearance of "key" strand) are obtainable.
***Coolness Factor: Because it's iGEM, and it'll look awesome.
***Novelness: Even if we fail on further levels, simply building a box is novel
 
**'''What pieces of the project do you already have a good idea that they can & will work?  what is novel?'''
***Jack-able:
****Tetrahedron concept, and possibly sequence, if we go w/ the open-surface model (a la http://www.sciencemag.org.ezp1.harvard.edu/cgi/content/full/310/5754/1661/FIG1)
****Thrombin-aptamer sequence
****Endo-incorporation of aptamer into oligo sequences (a la http://www3.interscience.wiley.com.ezp1.harvard.edu/cgi-bin/fulltext/110526995/PDFSTART)
****DNA tweezer strand-replacement sequence - though we can easily create one ourselves to hold a vertex of the tetrahedron together
***Novel:
****Design and sequence, if not going with the open-tetrahedron
 
*'''Logistics'''
**'''outline of project milestones and suggestions for division of labor'''
#Design a box with strand-displaced clasp (group) - we should design at least two different kinds of boxes.
#Write code to design box with oligo staples without aptamers, for testing, and with aptamers; (4 people at least, 2 per box)
#Test closed box w/o aptamers to see if it actually opens (gel studies should be good enough to show this).
##Simultaneously, test closed box w/ aptamers to see if it still opens (2 people at least).
#Test closed box w/o aptamers to see if it opens in presence of thrombin. (2 people at least)
##Simultaneously, test open box to see if aptamers on inner box surface actually bind thrombin (again, gel studies - or perhaps Western blot) (1 person).
#Test closed boxes w/ aptamers in in vitro system with thrombin, adding strand-displacement oligo after.  See if it sequesters (1 person)
#PEG-enclosure?
 
*'''Costs'''
**$$$
**Time
*'''Potential iGEM problems'''
**articulating how this fits into iGEM
**BioBricks
*'''Brief Summary'''
 
**We are trying to solve problem X with approach'''
**'''if we are successful, what will we be able to deliver in November'''
***Openable, triggerable box that binds thrombin and has a chance of being biostable
**'''if we are unsuccessful, what will we be able to deliver in November'''
***Box designs, possibly a non-opening box
 
==Bibliography==
 
===Thrombin===
<biblio>
# thr1 pmid=15170395
# thr2 pmid=6996572 
# thr3 pmid=1931959
</biblio>
<br>
 
===Thrombin-Aptamer===
<biblio>
# tha1 pmid=8107090
# tha2 pmid=15945116
</biblio>
<br>
 
===DNA Bioavailability===
<biblio>
# bioa1 pmid=16146351
# bioa2 pmid=11336355
# bioa3 pmid=7667185
</biblio>
<br>
 
===PEG Covering===
<biblio>
# peg1 pmid=15771224
# peg2 pmid=12922153
</biblio>
<br>
 
===Tetrahedral Structure===
<biblio>
# tet1 pmid=16339440
# tet2 pmid=2017259
</biblio>
 
===Strand Displacement Clasp===
<biblio>
# sdc1 pmid=11308883
</biblio>

Latest revision as of 18:15, 28 October 2006



Project Overview

  • Our goal is to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
  • The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
  • As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
  • We expect that molecular containers could have several interesting scientific and clinical applications, such as
    • Drug and gene delivery
    • Bio-marker scavenging (early detection of biomarkers)
    • Directed evolution (compartmentalized selections)
    • Using multiplexing for combinatorial chemical synthesis
    • Capture and stabilization of multiprotein complexes
    • Protein folding (chaperones)
    • Cell sorting

Working Team Members

Recent Changes

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

18 April 2024

     15:01  Pan:Who we are diffhist +14 Taopan talk contribs
     15:00  Pan:Methods‎‎ 2 changes history +456 [Taopan‎ (2×)]
     
15:00 (cur | prev) +2 Taopan talk contribs
     
14:59 (cur | prev) +454 Taopan talk contribs
     14:56  Pan:Publications‎‎ 2 changes history +396 [Taopan‎ (2×)]
     
14:56 (cur | prev) +74 Taopan talk contribs
     
14:54 (cur | prev) +322 Taopan talk contribs
     13:03  BioMicroCenter:Pricing diffhist +166 Challee talk contribs
     12:58  BioMicroCenter:Singular Sequencing‎‎ 2 changes history +124 [Challee‎ (2×)]
     
12:58 (cur | prev) +14 Challee talk contribs (→‎Things to Consider)
     
12:57 (cur | prev) +110 Challee talk contribs
     12:12  BioMicroCenter:Tecan Freedom Evo‎‎ 7 changes history +1,746 [Noelani Kamelamela‎ (7×)]
     
12:12 (cur | prev) +4 Noelani Kamelamela talk contribs
     
12:12 (cur | prev) +3 Noelani Kamelamela talk contribs
     
10:13 (cur | prev) +7 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) −42 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) +86 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:34 (cur | prev) +23 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:32 (cur | prev) +1,665 Noelani Kamelamela talk contribs
     11:42  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist −3 Sarah L. Perry talk contribs
     09:35  BioMicroCenter‎‎ 2 changes history +92 [Noelani Kamelamela‎ (2×)]
     
09:35 (cur | prev) +60 Noelani Kamelamela talk contribs
     
09:20 (cur | prev) +32 Noelani Kamelamela talk contribs
     09:32 Upload log Noelani Kamelamela talk contribs uploaded File:Chemagic360.jpg(from manual)

17 April 2024

     15:34  BioMicroCenter:Element Sequencing‎‎ 3 changes history +295 [Challee‎ (3×)]
     
15:34 (cur | prev) +195 Challee talk contribs
     
14:22 (cur | prev) +100 Challee talk contribs
     
14:07 (cur | prev) 0 Challee talk contribs
     13:10  BioMicroCenter:SingleCell diffhist +30 Noelani Kamelamela talk contribs (→‎10X CHROMIUM X)
     12:43  BioMicroCenter diffhist −15 Noelani Kamelamela talk contribs

16 April 2024

N    19:59  Nanoimprint Lithography (NIL) - Carter Paul‎‎ 10 changes history +7,205 [CarterPaul‎ (10×)]
     
19:59 (cur | prev) +769 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:52 (cur | prev) +1 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:50 (cur | prev) +202 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:17 (cur | prev) −20 CarterPaul talk contribs (→‎References)
     
19:17 (cur | prev) −1 CarterPaul talk contribs
     
19:11 (cur | prev) +4,278 CarterPaul talk contribs
     
18:53 (cur | prev) +1,891 CarterPaul talk contribs
N    
18:42 (cur | prev) +85 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} =Motivation= =Introduction to NIL= =Thermal NIL Process=")
     19:40 Upload log CarterPaul talk contribs uploaded File:NIL1.png
N    18:40  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist +24,060 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== While most microfluidic devices incorporate a 2D cell culture design, in which a single layer of cells is grown on the bottom of a device, these systems suffer from poor <i>in vivo</i> mimicry, as, in the human body, most cells grow in all directions.<sup>https://doi.org/10.5114/aoms.2016.63743 1</sup> To address this limitation, 3D cell culture devices have been developed - in w...")
     18:38  CHEM-ENG590E:Wiki Textbook‎‎ 2 changes history +63 [CarterPaul‎ (2×)]
     
18:38 (cur | prev) +50 CarterPaul talk contribs (→‎Chapter 1 - Microfabrication)
     
18:37 (cur | prev) +13 CarterPaul talk contribs
     18:36  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, and Adam Lyons diffhist +5,343 CarterPaul talk contribs (Added a Technique and applications section)
     10:20  Yarn Microfluidics - Roger Dirth‎‎ 11 changes history +406 [Rcostello‎ (11×)]
     
10:20 (cur | prev) +41 Rcostello talk contribs (→‎Applications)
     
10:19 (cur | prev) +36 Rcostello talk contribs (→‎Applications)
     
10:18 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Fabrication)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Washburn Equation)
     
10:16 (cur | prev) +38 Rcostello talk contribs (→‎Wicking Rate)
     
10:16 (cur | prev) +37 Rcostello talk contribs (→‎Introduction)
     
10:15 (cur | prev) +36 Rcostello talk contribs (→‎Wicking Rate)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Fabrication)
     
10:14 (cur | prev) +34 Rcostello talk contribs (→‎Applications)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)