IGEM:Harvard/2006/DNA nanostructures/Notebook/2006-8-20: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
== PEG precipitation ==
== Folding 5.0.A and 6.0 ==
===Design 5===
*Make working stock c5.0.A
{| {{table}}
| align="center" style="background:#f0f0f0;"|'''Working Stocks'''
| align="center" style="background:#f0f0f0;"|'''Description'''
| align="center" style="background:#f0f0f0;"|'''Pre-Working Stocks'''
| align="center" style="background:#f0f0f0;"|'''Water'''
| align="center" style="background:#f0f0f0;"|'''Total'''
|-
|c5.0A||no latches, no aptamers||1 (86 {{ul}}), 2 (49 {{ul}}), 3 (49 {{ul}}), 4 (2.5 {{ul}}), 5 (2.5 {{ul}}), 6 (1.5 {{ul}}), 7 (1.5 {{ul}})||8 {{ul}}||200 {{ul}}
|}
 
===Design 6===
* Mixing pre-working stocks (c6.0.1, c6.0.2, c6.0.3, c6.0.4, c6.0.5)
** To mix pre-working stocks from plates, pipet 10 {{ul}} of each of the appropriate oligos into 1.5 mL tubes.
* Mix working stocks c6.0.A, c6.0.B, c6.0.C
 
Pre-Working Stocks
{| {{table}}
| align="center" style="background:#f0f0f0;"|'''Description'''
| align="center" style="background:#f0f0f0;"|'''Plate Locations'''
| align="center" style="background:#f0f0f0;"|'''Total'''
|-
|c6.0.1: core barrel oligos||box_v6_A; box_v6_B rows A-D (1-12), row E (1-9)||153
|-
|c6.0.2: barrel oligos @ outside aptamers -aptamers||box_v6_B row E  (9-12), row F (1-12)||15
|-
|c6.0.3: barrel oligos @ inside aptamers -aptamers||box_v6_B row G (1-6)||6
|-
|c6.0.4: barrel oligos @ outside aptamers+ligand||box_v6_B row G (7-12), row H (1-12); box_v6_C row A (1-11)||29
|-
|c6.0.5: barrel oligos @ inside aptamers+ligand||box_v6_C row A (12), row B (1-12), row C (1-5)||18
|}
 
Working Stock
{| {{table}}
| Stock ID||Experiment||1||2||3||4||5
|-
| c6.0A||no aptamers||x||x||x||-||-
|-
| c6.0B||in aptamers||x||x||-||-||x
|-
| c6.0C||out aptamers||x||-||x||x||-
|}
 
{| {{table}}
| align="center" style="background:#f0f0f0;"|'''Working Stocks'''
| align="center" style="background:#f0f0f0;"|'''Description'''
| align="center" style="background:#f0f0f0;"|'''Pre-Working Stocks'''
| align="center" style="background:#f0f0f0;"|'''Water'''
| align="center" style="background:#f0f0f0;"|'''Total'''
|-
|c6.0A||no aptamers||1 (153 {{ul}}), 2 (15 {{ul}}), 3 (6 {{ul}})||26 {{ul}}||200 {{ul}}
|-
|c6.0B||in aptamers||1 (153 {{ul}}), 2 (15 {{ul}}), 5 (18 {{ul}})||14 {{ul}}||200 {{ul}}
|-
|c6.0C||out aptamers||1 (153 {{ul}}), 3 (6 {{ul}}), 4 (29 {{ul}})||12 {{ul}}||200 {{ul}}
|}
 
=== Quantify p7308 ===
* Need to quantify p7308 to have enough scaffold to fold everything.
*Pour 2% agraose, 11 mM {{mgcl2}} gel
*Run for 2 hrs, 70V
*When imaging gel, use spot density tool to measure intensity of each band
**Use saturation indicator to take a picture just below the point where any bands start saturating on the image
**Draw a rectangle that fits around the largest band on the gel
**Copy that rectangle and position it directly above the first band.  This will be used to measure background
**Repeat this for every band on the gel (one box for the band, one box for background)
**Record this data along with gel picture on the wiki
*To determine p7308 concentration, use background-subtracted value for each volume.  Scale each unknown concentration against the control (44 nM) according to the ratio of background-subtracted intensity for the band that looks closest in intensity
**For example, if the band in lane 1 (3 {{ul}}, 44 nM) had an intensity of 1000, and the band in lane 5 (3 {{ul}}, ?? nM) had an intensity of 900, then we would record 900/1000 * 44 = 39.6 nM as the estimated concentration for that lane.  Repeating for each lane should give you 3 data points, which you can average (throwing out any obvious outliers).
{| {{table}}
| align="center" style="background:#f0f0f0;"|'''Lane'''
| align="center" style="background:#f0f0f0;"|'''Contents'''
| align="center" style="background:#f0f0f0;"|'''Loading Buffer'''
|-
| 0||1kb DNA ladder (5 {{ul}})||
|-
| 1||p7308 060323, 44 nM (3 {{ul}})||AGLB (2 {{ul}}) + d{{h2o}} (9 {{ul}})
|-
| 2||p7308 060323, 44 nM (6 {{ul}})||AGLB (2 {{ul}}) + d{{h2o}} (6 {{ul}})
|-
| 3||p7308 060323, 44 nM (9 {{ul}})||AGLB (2 {{ul}}) + d{{h2o}} (3 {{ul}})
|-
| 4||p7308 060522, (1 {{ul}})||AGLB (2 {{ul}}) + d{{h2o}} (11 {{ul}})
|-
| 5||p7308 060522, (3 {{ul}})||AGLB (2 {{ul}}) + d{{h2o}} (9 {{ul}})
|-
| 6||p7308 060522, 6 {{ul}})||AGLB (2 {{ul}}) + d{{h2o}} (6 {{ul}})
|-
| 7||p7308 060522, (9 {{ul}})||AGLB (2 {{ul}}) + d{{h2o}} (3 {{ul}})
|}
 
 
===Folding protocol===
* Folding c5.0.A, c6.0.A, c6.0.B, c6.0.C - 24 tubes ea. * 40 {{ul}} per tube = 960 {{ul}} of each design
* since new scaffold still needs to be quantified, will use older scaffold (44nM)
* Each rxn:
    16 ul oligos (from working stock)
    9 ul p7308
    11 ul H20
    4 ul 10x folding buffer
 
== PEG fractionation ==
*Goal: to get cleaner purification of oligos away from nanostructures and to increase the volume of purified nanostructures we have for protection assays.
*Goal: to get cleaner purification of oligos away from nanostructures and to increase the volume of purified nanostructures we have for protection assays.
* Nanostructures:  
* Nanostructures:  
**using 30mM {{mgcl2}}, 1x oligos (seem to work best given [[IGEM:Harvard/2006/DNA_nanostructures/Notebook/2006-8-15#3._PEG|previous results]].  
**using 30mM {{mgcl2}}, 1x oligos (seems to work best given [[IGEM:Harvard/2006/DNA_nanostructures/Notebook/2006-8-15#3._PEG|previous results]]).  
**designs: c5.0.A, c5.0.C, c5.0.D [[Table_of_c5.0_Working_Stocks|key]]
**designs: c5.0.A, c5.0.C, c5.0.D [[Table_of_c5.0_Working_Stocks|key]]
* PEG: 8%, 10%. Total volume in each is 100 {{ul}}
* PEG: 8%, 10%. Total volume in each is 100 {{ul}}
Line 18: Line 122:
* spin at 16 k rcf at 4{{c}} for 10 min.
* spin at 16 k rcf at 4{{c}} for 10 min.
* carefully pipette off supernatant
* carefully pipette off supernatant
* resuspended "pellet" in 50 {{ul}} of water
* resuspended "pellet" in 1x folding buffer. for now, resuspend in original total volume (100 {{ul}} but may resuspend in less in the future to improve protection assay results)
**note: add PEG first, nanostructures last; mix using tapping after everything added. let sit for ~5 min. before putting it on ice
**note: add PEG first, nanostructures last; mix using tapping after everything added. let sit for ~5 min. before putting it on ice

Latest revision as of 11:53, 25 August 2006

Folding 5.0.A and 6.0

Design 5

  • Make working stock c5.0.A
Working Stocks Description Pre-Working Stocks Water Total
c5.0A no latches, no aptamers 1 (86 μL), 2 (49 μL), 3 (49 μL), 4 (2.5 μL), 5 (2.5 μL), 6 (1.5 μL), 7 (1.5 μL) 8 μL 200 μL

Design 6

  • Mixing pre-working stocks (c6.0.1, c6.0.2, c6.0.3, c6.0.4, c6.0.5)
    • To mix pre-working stocks from plates, pipet 10 μL of each of the appropriate oligos into 1.5 mL tubes.
  • Mix working stocks c6.0.A, c6.0.B, c6.0.C

Pre-Working Stocks

Description Plate Locations Total
c6.0.1: core barrel oligos box_v6_A; box_v6_B rows A-D (1-12), row E (1-9) 153
c6.0.2: barrel oligos @ outside aptamers -aptamers box_v6_B row E (9-12), row F (1-12) 15
c6.0.3: barrel oligos @ inside aptamers -aptamers box_v6_B row G (1-6) 6
c6.0.4: barrel oligos @ outside aptamers+ligand box_v6_B row G (7-12), row H (1-12); box_v6_C row A (1-11) 29
c6.0.5: barrel oligos @ inside aptamers+ligand box_v6_C row A (12), row B (1-12), row C (1-5) 18

Working Stock

Stock ID Experiment 1 2 3 4 5
c6.0A no aptamers x x x - -
c6.0B in aptamers x x - - x
c6.0C out aptamers x - x x -
Working Stocks Description Pre-Working Stocks Water Total
c6.0A no aptamers 1 (153 μL), 2 (15 μL), 3 (6 μL) 26 μL 200 μL
c6.0B in aptamers 1 (153 μL), 2 (15 μL), 5 (18 μL) 14 μL 200 μL
c6.0C out aptamers 1 (153 μL), 3 (6 μL), 4 (29 μL) 12 μL 200 μL

Quantify p7308

  • Need to quantify p7308 to have enough scaffold to fold everything.
  • Pour 2% agraose, 11 mM MgCl2 gel
  • Run for 2 hrs, 70V
  • When imaging gel, use spot density tool to measure intensity of each band
    • Use saturation indicator to take a picture just below the point where any bands start saturating on the image
    • Draw a rectangle that fits around the largest band on the gel
    • Copy that rectangle and position it directly above the first band. This will be used to measure background
    • Repeat this for every band on the gel (one box for the band, one box for background)
    • Record this data along with gel picture on the wiki
  • To determine p7308 concentration, use background-subtracted value for each volume. Scale each unknown concentration against the control (44 nM) according to the ratio of background-subtracted intensity for the band that looks closest in intensity
    • For example, if the band in lane 1 (3 μL, 44 nM) had an intensity of 1000, and the band in lane 5 (3 μL, ?? nM) had an intensity of 900, then we would record 900/1000 * 44 = 39.6 nM as the estimated concentration for that lane. Repeating for each lane should give you 3 data points, which you can average (throwing out any obvious outliers).
Lane Contents Loading Buffer
0 1kb DNA ladder (5 μL)
1 p7308 060323, 44 nM (3 μL) AGLB (2 μL) + dH2O (9 μL)
2 p7308 060323, 44 nM (6 μL) AGLB (2 μL) + dH2O (6 μL)
3 p7308 060323, 44 nM (9 μL) AGLB (2 μL) + dH2O (3 μL)
4 p7308 060522, (1 μL) AGLB (2 μL) + dH2O (11 μL)
5 p7308 060522, (3 μL) AGLB (2 μL) + dH2O (9 μL)
6 p7308 060522, 6 μL) AGLB (2 μL) + dH2O (6 μL)
7 p7308 060522, (9 μL) AGLB (2 μL) + dH2O (3 μL)


Folding protocol

  • Folding c5.0.A, c6.0.A, c6.0.B, c6.0.C - 24 tubes ea. * 40 μL per tube = 960 μL of each design
  • since new scaffold still needs to be quantified, will use older scaffold (44nM)
  • Each rxn:
    16 ul oligos (from working stock)
    9 ul p7308
    11 ul H20
    4 ul 10x folding buffer

PEG fractionation

  • Goal: to get cleaner purification of oligos away from nanostructures and to increase the volume of purified nanostructures we have for protection assays.
  • Nanostructures:
    • using 30mM MgCl2, 1x oligos (seems to work best given previous results).
    • designs: c5.0.A, c5.0.C, c5.0.D key
  • PEG: 8%, 10%. Total volume in each is 100 μL
    • 8 % Cocktail:
     40 μL 20% PEG
     10 μL 5M NaCl
     10 μL water
     40 μL Nanostructures (add last)
    • 10 % Cocktail:
     50 μL 20% PEG
     10 μL 5M NaCl
     40 μL Nanostructures (add last)
  • incubate on ice for 15 min.
  • spin at 16 k rcf at 4[[:Category:{{{1}}}|{{{1}}}]] for 10 min.
  • carefully pipette off supernatant
  • resuspended "pellet" in 1x folding buffer. for now, resuspend in original total volume (100 μL but may resuspend in less in the future to improve protection assay results)
    • note: add PEG first, nanostructures last; mix using tapping after everything added. let sit for ~5 min. before putting it on ice