IGEM:Harvard/2006/Fusion proteins

From OpenWetWare
Revision as of 12:49, 14 July 2006 by Perry (talk | contribs)
Jump to navigationJump to search


Plan

See the slides for some brief info.

Express monomeric streptavidin on E. coli cell surface

Scaffold 1: GPI anchor

Scaffold 2: Beta autotransporter

Scaffold 3: Lpp-OmpA

Major questions/concerns

  1. Where can we get the DNA expressing the scaffold protein. I need to look more into this, but I don't think we can just order it.
  2. Where do we get streptavidin DNA (smaller problem)
  3. What constraints do we have to worry about with streptavidin? In the original and later autotransporter papers, the passenger protein was mutated to lack cysteines in order to prevent disulfide bond formation in the periplasm: tertiary structure prevents passage of the protein through the beta barrel.
  4. How much time to get a first experiment up and running? This depends on how much work we have to do with the scaffold protein sequence and how fast we can get them (likely a long time).
  5. Will we be able to correspond with experts on this system? The founder of autodisplay, Joachim Jose, has not responded to some intial questions about autotransporter.

Demonstrate control of a nucleic acid interface between proteins and the cell surface

Notes

(Maybe Un-, but more likely..) fortunately, another group has done work like this. We'll expand on the "adaptamer" concept of Tahiri-Alaoui et al. (12000850). In this paper, the group evolved one aptamer which bound streptavidin, then spliced it to a CopA RNA. Then they spliced a complementary CopT RNA to a CD4 aptamer. Following CopA/CopT binding, the resulting construct could bind both CD4 and streptavidin. Neato. CopA and CopT bind each other by a kissing complex between two loops; mutations have been introduced before, so looking at those studies might be a good starting places for adjusting the dissociation rate (16199086).

The reason they go through the trouble of using CopA and CopT is that they maintain stable secondary structures; the group reports that when you just have any old complementary strands, the binding affinities of the aptamers goes down considerably. We may be able to design our own RNA-RNA interfaces to have well-defined secondary structure, enhancing our ability to control dissociation rate.

Additionally, we want to make one of these aptamers bind to the E. coli cell surface. There is a serious dearth of known aptamers that do this. The only report about one is 15541352; their aptamer binds LPS, a major component of the E. coli outer membrane, so it has a lot of targets. They don't give a Kd value, maybe because it didn't matter too much with so much LPS. Hope we can get our hands on the sequence..

One thing to consider: in the absence of aptamers that bind to the cell surface, we might as well try it with aptamers that bind proteins in vitro as done in 12000850. Why worry about cells for now? We're interested in a proof of principle.

Initial experiment

We'll attempt to build an adaptamer that can bind thrombin and streptavidin simultaneously. More details to come. Oligos to be used here

Major Questions/concerns

  1. What aptamers exist that bind the E. coli cell surface??? (and have public sequences! The sequence of the aptamer that binds LPS is not reported in the paper.)
  2. Is there any chance that we'll be able to evolve our own aptamer this summer? Online resources point toward 'no' but see last question.
  3. What other secondary structures might work as interfaces? If we design our own, the online programs mfold and Vienna RNA may be useful. Otherwise, we'll have to go with known complementary structures. Do the faculty members have any suggestions for structures?
  4. Time and reliability: Hopefully short! Aptamer sequences are relatively short, so we'll likely be able to order them instead of asking groups for them. Then we'd try tons of intermediate interfaces, which is just a matter of ordering more oligos.
  5. Will people respond to email? I've emailed David Liu about evolving aptamers and Sulatha Dwarakanath (author of 15541352) about aptamers that target the E. coli cell surface to no response. It would be quite helpful to hear their thoughts.

Other projects

A couple of related projects that we haven't really researched..

  1. Having E. coli export an aptamer outside the cell
  2. Using aptamers to actually stimulate a response on the cell surface

Presentations

Protein domain BioBricks presentation

Cell surface targeting Week 1

Cell surface targeting Week 4

Working Team Members

Recent Changes

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

15 April 2024

     23:43  User:Yanbin Huang‎‎ 2 changes history +170 [Yanbin Huang‎ (2×)]
     
23:43 (cur | prev) 0 Yanbin Huang talk contribs (→‎Granted Patents)
     
23:43 (cur | prev) +170 Yanbin Huang talk contribs (→‎Granted Patents)
     22:11  The paper that launched microfluidics - Xi Ning‎‎ 14 changes history +9,705 [Xning098‎ (14×)]
     
22:11 (cur | prev) −6 Xning098 talk contribs (→‎Summary)
     
22:07 (cur | prev) −12 Xning098 talk contribs (→‎Synthesis)
     
22:06 (cur | prev) 0 Xning098 talk contribs
     
22:06 (cur | prev) +1 Xning098 talk contribs
     
22:05 (cur | prev) 0 Xning098 talk contribs
     
22:03 (cur | prev) +630 Xning098 talk contribs
     
22:01 (cur | prev) +3,189 Xning098 talk contribs
     
21:44 (cur | prev) +688 Xning098 talk contribs (→‎Separation and quantification)
     
21:33 (cur | prev) +306 Xning098 talk contribs
     
21:29 (cur | prev) −2 Xning098 talk contribs (→‎Electrokinetic effect)
     
21:28 (cur | prev) −1 Xning098 talk contribs (→‎Separation and quantification)
     
21:27 (cur | prev) +398 Xning098 talk contribs (→‎Separation and quantification)
     
21:24 (cur | prev) +2,812 Xning098 talk contribs
     
21:06 (cur | prev) +1,702 Xning098 talk contribs
     21:45  (Upload log) [Xning098‎ (4×)]
     
21:45 Xning098 talk contribs uploaded File:Figure 4 Tdesign.png
     
21:30 Xning098 talk contribs uploaded File:Figure 3 Set-up3.png
     
21:24 Xning098 talk contribs uploaded File:Figure 2 Set-up1.png
     
21:09 Xning098 talk contribs uploaded File:Figure 1 electroosmotic flow.png
N    18:16  Multilayer Paper Microfluidics - Madyson Redder‎‎ 21 changes history +6,228 [Mredder‎ (21×)]
     
18:16 (cur | prev) +540 Mredder talk contribs (→‎Fabrication Methods)
     
18:07 (cur | prev) +822 Mredder talk contribs (→‎Fabrication Methods)
     
17:58 (cur | prev) +1,223 Mredder talk contribs (→‎Fabrication Methods)
     
17:47 (cur | prev) −47 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)
     
17:46 (cur | prev) +2 Mredder talk contribs (→‎Advantages)
     
17:46 (cur | prev) +1,094 Mredder talk contribs (→‎Advantages)
     
17:37 (cur | prev) +24 Mredder talk contribs (→‎Materials)
     
17:37 (cur | prev) +619 Mredder talk contribs (→‎Materials)
     
17:19 (cur | prev) +18 Mredder talk contribs (→‎Uses)
     
17:19 (cur | prev) +7 Mredder talk contribs (→‎Uses)
     
17:18 (cur | prev) −19 Mredder talk contribs (→‎Developing Countries and Travel)
     
17:18 (cur | prev) +15 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) 0 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) +1,103 Mredder talk contribs (→‎Uses)
     
17:14 (cur | prev) −453 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)
     
17:13 (cur | prev) +1 Mredder talk contribs (→‎Overview)
     
17:12 (cur | prev) +273 Mredder talk contribs (→‎Overview)
     
17:08 (cur | prev) −699 Mredder talk contribs (→‎Overview)
     
17:06 (cur | prev) +95 Mredder talk contribs
     
17:04 (cur | prev) +12 Mredder talk contribs
N    
17:03 (cur | prev) +1,598 Mredder talk contribs (Created page with "{{Template:CHEM-ENG590E}} Overview 3D polymeric or glass microfluidic devices were created to run tests on small amounts of liquid and receive results in a timely manner. However, these devices are costly and time consuming to produce. A solution to this problem was single-layer paper microfluidic devices. The most common known examples of single-layer paper microfluidic devices are pregnancy tests, COVID-19 antigen tests, and glucose test strips. While these devices a...")
     17:02  CHEM-ENG590E:Wiki Textbook diffhist +54 Mredder talk contribs (→‎Chapter 7 - Fiber-based Microfluidics)
 m   07:22  Paper Microfluidic Device for Archiving Breast Epithelial Cells diffhist +6 Sarah L. Perry talk contribs
     06:39  Hu diffhist +66 Hugangqing talk contribs

14 April 2024