IGEM:Harvard/2007/Brainstorming/

From OpenWetWare
Revision as of 07:52, 6 April 2007 by Harriswang (talk | contribs)
Jump to navigationJump to search

Project Ideas 3/19/07

Brainstorming with Sammy, Alex, Shaunak, Stephanie, Mingming, Perry, and George. TFs and Advisors in attendance Nick, Mike, Harris, Tamara, George Church, Jagesh Shah, William Shih, and Alain Viel.

Biological Based Fuel Cells

Bacterial that Respond to (by fluorescence) or Degrade Plaque

Viruses as a Transfer Mechanism

Engineering E. coli to Resist Mutations
--The intention is prevention of evolution that would ruin biological parts; however, we recognize that directed evolution is a useful tool in 'discovering' potentially useful parts and mutations. http://www.seas.harvard.edu/projects/weitzlab/Jeremy%20web%20page.htm

Cellulose to EtOH in Algae or other system

""~~Some Papers on this Subject (added by SAV, feel free to add more)11:22, 2 April 2007 (EDT)""

Lynd, Zyl, et al. "Consolidated bioprocessing of cellulosic biomass: an update" Current Opinion in Biotechnology 2005, 16:577-583
---This paper gives a pretty good overview of research into consolidated bioprocessing of cellulose into ethanol, and some of the main problems as well. If we're interested in looking at fuels, this is definitely a good paper to look at.

Jeffries, Thomas. "Engineering yeasts for xylose metabolism" Current opinion in biotechnology 2006, 17:320-326.
---This paper looks at turning xylose into ethanol via yeasts, and recent results in this field of research. If we think we might not want to use bacteria, this is a good overview.
Sticklen, Mariam. "Plant genetic engineering to improve biomass characteristics for biofuels." Current Opinion in Biotechnology 2006, 17:315-319
--Looks at problems from biomass cellulose, such as lignin, and current research into ways to treat it. Also looks at other ways to engineer plants. I think less relevant for us, but still interesting as a way for getting a feel of some of the issues surrounding biomass cellulose


Fatty Acid Production and Degradation for Energy

Molecular Motors

Sequestration of Toxic Compounds by Bacteria (arsenic)

Bacterial Surface Expression

Vascular Tissues

Artificial Vascularization in Bacterial Biofilms

Bacterial Biosensors (Detection in the Environment) (Water Samples)


Project Ideas 04/05/07

Selection mechanisms for key/lock riboregulators (see 2006 Berkeley Project)

Biofuel & light sensitive proton pump (Pseudomonas Putida for exportation of short chain alkanes)

Powering medical devices

Aartificial cells

Mirror image proteins

Nonribosomal synthesis of proteins

Radon sensor (practical considerations of working with Radon)