IGEM:IMPERIAL/2006/Protocols/T9002: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
 
(47 intermediate revisions by 6 users not shown)
Line 1: Line 1:
=comments from Vincent=
{| border="1" cellpadding="0" width="100%"
|-
!style="background:#FF9966" height="25pt" width="80pt"|Actual Part
!colspan="3"| [[Image:T9002.JPG|350px]]<br><font color=#FF9966> <big>[http://openwetware.org/wiki/IGEM:IMPERIAL/2006/project/Oscillator/project_browser/Test_Sensing_Prey_Construct/TestingValidation Link to Project Browser (Test Sensing Prey Construct)]</big></font color>
|}


<font color = green>
VR: To describe your protocol:
*define motivation behing it + link to part used
*list equipment needed
*list different steps of the protocol - bullet points -
*discuss potential issues
</font>




==<bbpart>T9002</bbpart>: Transfer Function Characterisation & <bbpart>J37016</bbpart>/<bbpart>J37020</bbpart> Predator Cell Test Construct==




==Part T9002: Transfer Function Characterisation==


===Motivation===
===Motivation===


The motivation behind this test construct is to characterise the transfer function linking AHL input to GFP output.
The motivation behind this <bbpart>T9002</bbpart> test construct is to characterise the transfer function linking AHL input to GFP output.
 
This will allow us to construct a standard transfer function curve which will allow us to relate GFP output to an unknown AHL input, forming the basis of an AHL assay.


This will allow us to construct a standard curve which will allow us to relate GFP output to an unknown AHL input, forming the basis of an AHL assay.
We also would like to explore the AHL input to GFP output in our predator cell constructs <bbpart>J37016</bbpart> and <bbpart>J37020</bbpart> (as it will directly link to AiiA and LuxR production in the predator cell).


===Materials & Equipment===
===Materials & Equipment===
Line 24: Line 23:
*Equipment
*Equipment
**Wallac Victor 3 Multi-Well Fluorimeter
**Wallac Victor 3 Multi-Well Fluorimeter
**11 Ependorf Tubes
**Eppendorf Tubes
**Small White Cap Tubes
**Large White Cap Tubes
**Gilson Pippettes
**Gilson Pippettes
**37oC Shaker
**37°C Shaker
**[[IGEM:IMPERIAL/Protocols/T9002_Report|T9002/J37016/J37020 Report Sheet]]


*Materials
*Materials
**AHL
**Dilution series of AHL [1000 {{uM}}, 100 {{uM}}, 10 {{uM}}, 5 {{uM}}, 1 {{uM}}, 500 nM, 100 nM, 50 nM, 10 nM, 1 nM]
**GFP Standard Solution
**GFP Standard Solution
**E.coli Growth Medium w/Ampicilin (LB/M9)
**LB Medium with 40 {{ug}}/mL Ampicilin
**E.coli Culture Containing T9002
**E.coli DH5a Culture Containing T9002/J37016/J37020
 
===Protocol===
<showhide>
*Inoculate a culture from 10ul of stored T9002/J37016/J37020 in 2ml LB medium containing 50 {{ug}}/mL Ampicillin.
*Incubate at 37°C for overnight in a shaker. __HIDER__
<hide>
:<font color=green>This is to get a good stock of cells for use in the experiment. After the overnight culture the cells will be in stationary phase</font>
</hide>
</showhide>
*In the morning, prewarm 70 mL LB Amp medium in the 37°C water bath.
*Measure and record OD600
<showhide>
*Inoculate a 16ml fresh culture from the o/n to bring back the OD600 to 0.1, use the prewarmed LB + Ampicilin in waterbath. __HIDER__
<hide>
:<font color=green>Using prewarmed LB/M9 prevents a temperature shock to the culture, which would increase lag time</font>
</hide>
</showhide>
<center><amsmath>
\frac{0.1}{\mbox{OD of culture}} \times \mbox{16 mL}
</amsmath></center>
 
:OD of T9002/J37016/J37020 culture (1st Measurement):  _________
 
:Amount to dilute of T9002/J37016/J37020 culture = ________ mL (amount of original culture to use)
 
:Amount of prewarmed LB with Ampcilillin to use = ________ mL (16 mL - above result)
 
*Return LB to 37°C waterbath
<showhide>
*Incubate new culture at 37°C for 2 hours in a shaker __HIDER__
<hide>
:<font color = green>This returns cells to exponential phase from stationary phase</font>
</hide>
</showhide>
<br>
''After 2hrs in the shaker'':
 
*After the 2 hours measure and record the OD600
<showhide>
*Dilute again for an OD of 0.1 in a new culture of 25ml of a prewarmed LB + Ampicilin. __HIDER__
<hide>
:<font color=green>This dilution gives a standard OD to which to innoculate the culture with AHL (in this case 0.1). Innoculating at different ODs is known to give different results, so it is important a standard OD is used</font>
</hide>
</showhide>
::::<amsmath>
\frac{0.1}{\mbox{OD of culture}} \times \mbox{25 mL}
</amsmath>
 
:OD of T9002/J37016/J37020 culture (1st Measurement):  _________
 
:Amount to dilute of T9002/J37016/J37020 culture = ________ mL (amount of original culture to use)
 
:Amount of prewarmed LB with Ampcilillin to use = ________ mL (25 mL - above result)


===Protcol===
*Vortex new T9002/J37016/J37020 culture.
*Inoculate a culture from 10ul of stored T9002 in 2ml LB/M9 growth medium containing 50mg/ml Ampicilin.
*Incubate at 37oC for overnight in a shaker.
*Measure and record OD
*Remove cultures from shaker and dilute so the culture is at an OD of 0.1 using prewarmed LB/M9.
**OD/0.1 x 2 = Total volume required for dilution
*Incubate at 37oC for 2 hours in a shaker - '''<font color = green>This returns cells to exponential phase</font>'''
*Measure and record the OD
*Dilute again with prewarmed LB/M9 for an OD of 0.1.
*Add the following to 11 seperate ependorf tubes:


*To start AHL incubation:
**Label each tube with AHL concentration
**Put 20ul of the AHL into 11 seperate 5ml white capped tubes
**Add appropriate amount of T9002 samples as per the table below
**Record time of inoculation in report sheet.
**Vortex each tube
<showhide>
:*Incubate all 5mL tubes in a 37°C shaker for 4 hours so GFP expression can reach steady state __HIDER__
<hide>
::<font color=green>Do not pipette the samples into the 96 well plate yet - because if the 96 well plate is put in the shaker, cross-contamination between the well is very likely to happen. </font color>
</hide></showhide>
<br>
<br>
{| border="1" cellpadding="5"
{| border="1" cellpadding="1"
|
{| border="1" cellpadding="2"
!<u>Sample (ul)</u> || <u>Stock Concentration</u> !! <u>AHL (ul)</u> !! <u>Final AHL Concentration</u>
!<u>Sample (ul)</u> || <u>Stock Concentration</u> !! <u>AHL (ul)</u> !! <u>Final AHL Concentration</u>
|-
|-
|990
|1980
|1000uM
|1000uM
|10
|20
|10uM
|10uM
|-
|-
|990
|1980
|100uM
|100uM
|10
|20
|1uM
|1uM
|-
|-
|990
|1980
|10uM
|10uM
|10
|20
|100nM
|100nM
|-
|-
|990
|1980
|5uM
|5uM
|10
|20
|50nM
|50nM
|-
|-
|990
|1980
|1uM
|1uM
|10
|20
|10nM
|10nM
|-
|-
|990
|1980
|500nM
|500nM
|10
|20
|5nM
|5nM
|-
|-
|990
|1980
|100nM
|100nM
|10
|20
|1nM
|1nM
|-
|-
|990
|1980
|50nM
|50nM
|10
|20
|0.5nM
|0.5nM
|-
|-
|990
|1980
|10nM
|10nM
|10
|20
|0.1nM
|0.1nM
|-
|-
|990
|1980
|1nM
|1nM
|10
|20
|0.01nM
|0.01nM
|-
|-
|1000
|2000
|N/A
|N/A
|0
|0
|0nM
|0nM
|}
|
[[Image:IGEM_IMPERIAL_T9002_96WellPlate.png|400px|T9002 96 well plate]]
|}
|}
<br>
<br>
*Incubate the ependorfs in a 37oC shaker for 4 hours
*After the 4 hours add 200uL samples from the ependorf tubes to the 96 well plate
*Do this for 5 repeats
*Add 200uL of growth medium to a well to act as a control
*Add 200uL of 200x diluted GFP standard solution
*Take 3 readings with a 20 minute interval
*Taking readings
**Take the plate from the water bath
**Use the Victor3 to measure flourescence and absorbance
**Return the plate to the water bath


Any questions, see [[User:Da104|Deepti]] or [[User:TomH|Tom]].
''After 4hrs in the shaker'':
 
*Add a 200uL sample from each eppendorf tube to the 96 well plate.
*Do this for 8 repeats following suggested patterning (see above)
**NOTE: Since all repeats are made from the same culture, it is enuogh to do 4 repeats - thus one plate can be used for 2 different tests. (Pipetting errors will be ruled out since absorbance is measured later and can then be considered when processing the data.)
*Add 4 x 200uL of growth medium to a well to act as a control.
*Take the plate and eppendorfs to BCHEM
<showhide>
*Add 995ul of ultra pure water to the eppendorf, together with 5ul of undiluted GFP standard solution and mix __HIDER__
<hide>
:<font color=green>A 200 x dilution of GFP is made. <br>
:The undiluted GFP is in the BCHM Level 6 Cold Room on our shelf. It is in a small grey plastic box. Pippettes, tips and ultrapure water are located on a shelf above the electroporation machine in the plate reader room.</font>
</hide>
</showhide>
*Add 4 x 200uL of the 200x diluted GFP standard solution to the wells following the suggested patterning
*Take a reading
**Take the plate to the plate reader room
<showhide>
:*Use the Victor3 to measure flourescence and absorbance __HIDER__
<hide>
::<font color=green>Use the preprogrammed Assay under the 'Students' folder called GFP + Abs490</font>
</hide>
</showhide>
<showhide>
*Repeat the measurment a further two times straight after each other __HIDER__
<hide>
:<font color=green>This to assess the variability of the machine</font>
</hide>
</showhide>
<showhide>
*Save data file from computer. __HIDER__
<hide>
:<font color=green>You'll need a memory stick to save the information to. Unfortunatley the computer isn't networked</font>
</hide>
</showhide>
*Copy and paste the data into a [http://openwetware.org/images/a/a2/T9002_Data_Spreadsheet.xls T9002/J37016/J37020 Data Spreadsheet]
 




'''Last Updated:''' [[User:TomH|Tom]] 12:03, 8 August 2006 (BST)
'''Last Updated:''' [[User:TomH|Tom]] 15:06, 18 August 2006 (BST) <br>
'''Last Updated:''' [[User:Farah|Farah]] 04:09, 22 August 2006 (EDT)      ('''changes made:''' changed 30ml culture to 25ml and amended volume of sample concentration (it previously read 1880ul)). <br>
'''Last Updated:''' [[User:Johnsy|Johnsy]] 05:59, 22 August 2006 (EDT) <br>
'''Last Updated:''' [[User:Cys|Christin]] 13:24, 12 September 2006 (EDT) <br>




Many thanks to Drew Endy and Barry Canton from MIT for providing the protocol on which this is based.
Many thanks to Drew Endy and Barry Canton from MIT for providing the protocol on which this is based.


===Potential Issues===
===Potential Issues===


*What is the GFP standard solution? Do we know its concentration? How stable is that? half life?
*What is the GFP standard solution? Do we know its concentration? How stable is that? half life?
*Growing all the five repeats together in one ependorf tube, can we get around this?
*<font color=red>JS:  Please can you write a protocol that will decouple other experiments with this one in case we want to assay an unknown concentration of AHL.  Thanks. (i.e. take an unknown concentration of AHL of x amount into the T9002....measure flourescence...etc)</font>
**Incuabtor that can shake with the 96 well plate?
[[IGEM:IMPERIAL/Protocols/T9002_AHL_assay]]

Latest revision as of 09:36, 28 October 2006

Actual Part
Link to Project Browser (Test Sensing Prey Construct)


<bbpart>T9002</bbpart>: Transfer Function Characterisation & <bbpart>J37016</bbpart>/<bbpart>J37020</bbpart> Predator Cell Test Construct

Motivation

The motivation behind this <bbpart>T9002</bbpart> test construct is to characterise the transfer function linking AHL input to GFP output.

This will allow us to construct a standard transfer function curve which will allow us to relate GFP output to an unknown AHL input, forming the basis of an AHL assay.

We also would like to explore the AHL input to GFP output in our predator cell constructs <bbpart>J37016</bbpart> and <bbpart>J37020</bbpart> (as it will directly link to AiiA and LuxR production in the predator cell).

Materials & Equipment

  • Equipment
    • Wallac Victor 3 Multi-Well Fluorimeter
    • Eppendorf Tubes
    • Small White Cap Tubes
    • Large White Cap Tubes
    • Gilson Pippettes
    • 37°C Shaker
    • T9002/J37016/J37020 Report Sheet
  • Materials
    • Dilution series of AHL [1000 μM, 100 μM, 10 μM, 5 μM, 1 μM, 500 nM, 100 nM, 50 nM, 10 nM, 1 nM]
    • GFP Standard Solution
    • LB Medium with 40 μg/mL Ampicilin
    • E.coli DH5a Culture Containing T9002/J37016/J37020

Protocol

<showhide>

  • Inoculate a culture from 10ul of stored T9002/J37016/J37020 in 2ml LB medium containing 50 μg/mL Ampicillin.
  • Incubate at 37°C for overnight in a shaker. __HIDER__

<hide>

This is to get a good stock of cells for use in the experiment. After the overnight culture the cells will be in stationary phase

</hide> </showhide>

  • In the morning, prewarm 70 mL LB Amp medium in the 37°C water bath.
  • Measure and record OD600

<showhide>

  • Inoculate a 16ml fresh culture from the o/n to bring back the OD600 to 0.1, use the prewarmed LB + Ampicilin in waterbath. __HIDER__

<hide>

Using prewarmed LB/M9 prevents a temperature shock to the culture, which would increase lag time

</hide> </showhide>

<amsmath>

\frac{0.1}{\mbox{OD of culture}} \times \mbox{16 mL}

</amsmath>
OD of T9002/J37016/J37020 culture (1st Measurement): _________
Amount to dilute of T9002/J37016/J37020 culture = ________ mL (amount of original culture to use)
Amount of prewarmed LB with Ampcilillin to use = ________ mL (16 mL - above result)
  • Return LB to 37°C waterbath

<showhide>

  • Incubate new culture at 37°C for 2 hours in a shaker __HIDER__

<hide>

This returns cells to exponential phase from stationary phase

</hide> </showhide>
After 2hrs in the shaker:

  • After the 2 hours measure and record the OD600

<showhide>

  • Dilute again for an OD of 0.1 in a new culture of 25ml of a prewarmed LB + Ampicilin. __HIDER__

<hide>

This dilution gives a standard OD to which to innoculate the culture with AHL (in this case 0.1). Innoculating at different ODs is known to give different results, so it is important a standard OD is used

</hide> </showhide>

<amsmath>

\frac{0.1}{\mbox{OD of culture}} \times \mbox{25 mL} </amsmath>

OD of T9002/J37016/J37020 culture (1st Measurement): _________
Amount to dilute of T9002/J37016/J37020 culture = ________ mL (amount of original culture to use)
Amount of prewarmed LB with Ampcilillin to use = ________ mL (25 mL - above result)
  • Vortex new T9002/J37016/J37020 culture.
  • To start AHL incubation:
    • Label each tube with AHL concentration
    • Put 20ul of the AHL into 11 seperate 5ml white capped tubes
    • Add appropriate amount of T9002 samples as per the table below
    • Record time of inoculation in report sheet.
    • Vortex each tube

<showhide>

  • Incubate all 5mL tubes in a 37°C shaker for 4 hours so GFP expression can reach steady state __HIDER__

<hide>

Do not pipette the samples into the 96 well plate yet - because if the 96 well plate is put in the shaker, cross-contamination between the well is very likely to happen.

</hide></showhide>

Sample (ul) Stock Concentration AHL (ul) Final AHL Concentration
1980 1000uM 20 10uM
1980 100uM 20 1uM
1980 10uM 20 100nM
1980 5uM 20 50nM
1980 1uM 20 10nM
1980 500nM 20 5nM
1980 100nM 20 1nM
1980 50nM 20 0.5nM
1980 10nM 20 0.1nM
1980 1nM 20 0.01nM
2000 N/A 0 0nM

T9002 96 well plate


After 4hrs in the shaker:

  • Add a 200uL sample from each eppendorf tube to the 96 well plate.
  • Do this for 8 repeats following suggested patterning (see above)
    • NOTE: Since all repeats are made from the same culture, it is enuogh to do 4 repeats - thus one plate can be used for 2 different tests. (Pipetting errors will be ruled out since absorbance is measured later and can then be considered when processing the data.)
  • Add 4 x 200uL of growth medium to a well to act as a control.
  • Take the plate and eppendorfs to BCHEM

<showhide>

  • Add 995ul of ultra pure water to the eppendorf, together with 5ul of undiluted GFP standard solution and mix __HIDER__

<hide>

A 200 x dilution of GFP is made.
The undiluted GFP is in the BCHM Level 6 Cold Room on our shelf. It is in a small grey plastic box. Pippettes, tips and ultrapure water are located on a shelf above the electroporation machine in the plate reader room.

</hide> </showhide>

  • Add 4 x 200uL of the 200x diluted GFP standard solution to the wells following the suggested patterning
  • Take a reading
    • Take the plate to the plate reader room

<showhide>

  • Use the Victor3 to measure flourescence and absorbance __HIDER__

<hide>

Use the preprogrammed Assay under the 'Students' folder called GFP + Abs490

</hide> </showhide> <showhide>

  • Repeat the measurment a further two times straight after each other __HIDER__

<hide>

This to assess the variability of the machine

</hide> </showhide> <showhide>

  • Save data file from computer. __HIDER__

<hide>

You'll need a memory stick to save the information to. Unfortunatley the computer isn't networked

</hide> </showhide>


Last Updated: Tom 15:06, 18 August 2006 (BST)
Last Updated: Farah 04:09, 22 August 2006 (EDT) (changes made: changed 30ml culture to 25ml and amended volume of sample concentration (it previously read 1880ul)).
Last Updated: Johnsy 05:59, 22 August 2006 (EDT)
Last Updated: Christin 13:24, 12 September 2006 (EDT)


Many thanks to Drew Endy and Barry Canton from MIT for providing the protocol on which this is based.

Potential Issues

  • What is the GFP standard solution? Do we know its concentration? How stable is that? half life?
  • JS: Please can you write a protocol that will decouple other experiments with this one in case we want to assay an unknown concentration of AHL. Thanks. (i.e. take an unknown concentration of AHL of x amount into the T9002....measure flourescence...etc)

IGEM:IMPERIAL/Protocols/T9002_AHL_assay