IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/Results

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
('''Our Results''')
('''Our Results''')
Line 1: Line 1:
{{Template:IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analysis}}
{{Template:IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analysis}}
=='''Our Results'''==
=='''Our Results'''==
-
 
:During the run of the summer 2006, we had time to study six 2-dimensional Dynamical Systems. Unfortunately we lacked time to carry out a thorough analysis of the 3D model.In order of complexity, the 2D models are:
:During the run of the summer 2006, we had time to study six 2-dimensional Dynamical Systems. Unfortunately we lacked time to carry out a thorough analysis of the 3D model.In order of complexity, the 2D models are:
<br><br>
<br><br>
-
:<font size="4"> '''2D Model 1: Lotka – Volterra''' </font size="4">
+
:*<font size="4"> '''2D Model 1: Lotka – Volterra''' </font size="4">
:::[[Image:Model1.PNG]]
:::[[Image:Model1.PNG]]
::*Lotka-Volterra is the first (and most famous) model for prey-predator interactions and is notoriously endowed with some very appealing properties. Lotka-Volterra also was a major inspiration for the design of the molecular predation oscillator.
::*Lotka-Volterra is the first (and most famous) model for prey-predator interactions and is notoriously endowed with some very appealing properties. Lotka-Volterra also was a major inspiration for the design of the molecular predation oscillator.
Line 11: Line 10:
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model1| Detailed Analysis for Lotka-volterra]]</b>
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model1| Detailed Analysis for Lotka-volterra]]</b>
<br><br>
<br><br>
-
:<font size="4"> '''2D Model 2: Bounded Prey Growth'''</font size="4">  
+
:*<font size="4"> '''2D Model 2: Bounded Prey Growth'''</font size="4">  
:::[[Image:Model2.PNG]]
:::[[Image:Model2.PNG]]
::*Lotka-Volterra is far too simple to yield essential results on the complex 2D model.  
::*Lotka-Volterra is far too simple to yield essential results on the complex 2D model.  
Line 17: Line 16:
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model2| Detailed Analysis for Model with Bounded Prey Growth]]</b>
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model2| Detailed Analysis for Model with Bounded Prey Growth]]</b>
<br><br>
<br><br>
-
:<font size="4">  '''2D Model 3: Bounded Predator and Prey Growth'''</font size="4">  
+
:*<font size="4">  '''2D Model 3: Bounded Predator and Prey Growth'''</font size="4">  
:::[[Image:Model3.PNG]]
:::[[Image:Model3.PNG]]
::*Bounding the growth of the preys only stabilises the system to the extent we cannot make it oscillate anymore.  
::*Bounding the growth of the preys only stabilises the system to the extent we cannot make it oscillate anymore.  
Line 23: Line 22:
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model3| Detailed Analysis for Model with Bounded Growths]]</b>
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model3| Detailed Analysis for Model with Bounded Growths]]</b>
<br><br>
<br><br>
-
:<font size="4">'''2D Model 3bis: Bounded  Prey Growth and Prey Killing '''</font size="4">   
+
:*<font size="4">'''2D Model 3bis: Bounded  Prey Growth and Prey Killing '''</font size="4">   
:::[[Image:Model3a.PNG]]
:::[[Image:Model3a.PNG]]
::*We have studied this model in parallel with Model 3.
::*We have studied this model in parallel with Model 3.
Line 30: Line 29:
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model3a| Detailed Analysis for Model with bounded prey growth and degradation]]</b>
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model3a| Detailed Analysis for Model with bounded prey growth and degradation]]</b>
<br><br>
<br><br>
-
:<font size="4"> '''2D Model 4: Bounded Predator and Prey Growth with Controlled Killing of Preys'''</font size="4">
+
:*<font size="4"> '''2D Model 4: Bounded Predator and Prey Growth with Controlled Killing of Preys'''</font size="4">
:::[[Image:Model4.PNG]]
:::[[Image:Model4.PNG]]
::* Bounding growth and killing yielded oscillations; bounding prey and predator growths did not.
::* Bounding growth and killing yielded oscillations; bounding prey and predator growths did not.
Line 36: Line 35:
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model4| Detailed Analysis for Model 4]]</b>
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/2D Model4| Detailed Analysis for Model 4]]</b>
<br><br>
<br><br>
-
:* '''Final 2D Model : 2D Model 5'''
+
:* <font size="4">'''Final 2D Model : 2D Model 5'''</font size="4">
:::[[Image:Model5.PNG]]
:::[[Image:Model5.PNG]]
::*Model 4 can be made to oscillate but also exhibits some very unrealistic properties.
::*Model 4 can be made to oscillate but also exhibits some very unrealistic properties.

Revision as of 09:18, 30 October 2006

Analysis of the Model of the Molecular Predation Oscillator


Our Results

During the run of the summer 2006, we had time to study six 2-dimensional Dynamical Systems. Unfortunately we lacked time to carry out a thorough analysis of the 3D model.In order of complexity, the 2D models are:



  • 2D Model 1: Lotka – Volterra
Image:Model1.PNG
  • Lotka-Volterra is the first (and most famous) model for prey-predator interactions and is notoriously endowed with some very appealing properties. Lotka-Volterra also was a major inspiration for the design of the molecular predation oscillator.



  • 2D Model 2: Bounded Prey Growth
Image:Model2.PNG



  • 2D Model 3: Bounded Predator and Prey Growth
Image:Model3.PNG
  • Bounding the growth of the preys only stabilises the system to the extent we cannot make it oscillate anymore.
  • We now seek ways to obtain oscillations by bounding the growth terms of both preys and predators.
  • Detailed Analysis for Model with Bounded Growths



  • 2D Model 3bis: Bounded Prey Growth and Prey Killing
Image:Model3a.PNG



  • 2D Model 4: Bounded Predator and Prey Growth with Controlled Killing of Preys
Image:Model4.PNG
  • Bounding growth and killing yielded oscillations; bounding prey and predator growths did not.
  • We now combine both previous models and get one step closer to the final system
  • Detailed Analysis for Model 4



  • Final 2D Model : 2D Model 5
Image:Model5.PNG
  • Model 4 can be made to oscillate but also exhibits some very unrealistic properties.
  • Fortunately experimental conditions lead us to introduce a final dissipative term –eU to the derivative of the prey population.
  • We investigate the properties of this final 2D model and prove that the new dissipative term confers it some very interesting characteristics.
  • Detailed Analysis of the complete 2D Model
Personal tools