IGEM:MIT/2008/Notebook/Yogurt/sequences

From OpenWetWare
Jump to navigationJump to search

Primers

Include sequence, usage, temperatures, concentration, start date.

P1: Forward Primer for Promoter

    • foward sequence: CCGCTTCTAGAGTAATACGACTCACTATAGGGAATACAAGCTACTTGTTCTTTTTGCATACTAgAGATTAAAGAGGAGAAATACTAGATGTACGTCTTCTTTTTTAGGCG
    • length = 110 bp
    • melting temp = 68.8 C
    • GC content % = 37.3

P2: Reverse Primer for Peptide

    • reverse sequence: GTT CTT CTC CTT TAC GCA TAG AAC CAC CAC CAG AAC CAC C
    • length = 69 bp
    • melting temp = 71.8 C
    • GC content % = 50.7

TEV Protease cut site

  • Amino Acid Sequence : Glu-Asn-Leu-Tyr-Phe-Gln-Gly (Cuts between Gln-Gly)
  • Base Pair Sequence: GAAAACCTGTACTTCCAGGGT

P3: Forward Primer for GFP

forward sequence: GGT GGT TCT GGT GGT GGT TCT ATG CGT AAA GGA GAA GAA C

    • includes 21 bp of 2nd half of linker, and 19 bp of GFP
    • length = 40 bp
    • melting temp = 66.2 C
    • GC content % = 50%

P4: Reverse Primer for GFP

    • reverse sequence: CTG CAG CGG CCG CTA CTA GTA AGA GAA TAT AAA AAG CCA GAT TAT TAA TCC GGC TTT TTT ATT ATT TTT ATT AGT GGT GAT GGT GAT GAT GTT TGT ATA GTT CAT CCA TGC
    • length = 111 bp
    • melting temp = 69.6 C
    • GC content % = 36.0

Plasmids

Include sequence, BioBrick #, functional features, digestion map.


PCR Products

Include sequence, template and primers, functional features.

Other

DNA sequence to synthesize - epitope/p1025/linker (6/17/08)

  • 6/17, updated signal peptide, silent mutations in 1st part of linker (GGC instead of GGT coding for Gly)

sequence: ATGCAGAAGAAAAAATCCGCACGCCATTTGAACAAAGTGGCTGAA TTAGCCGCAGCACTGCTCCTATCAGCGAGTCCACTGGCGGGAACTTTC GACTACAAAGACGACGACGACAAAGGTGGTGGTCAGCTGAAAACCGCT GACCTGCCGGCTGGTCGTGACGAAACCACCTCTTTCGTTCTGGTTGGT GGTGGTTACCCGTACGACGTTCCGGACTACGCTGGCGGCGGCTCTGGC GGCGGCTCTGGCGGCGGCTCTGAAAACCTGTACTTCCAGGGTGGTGGT GGTTCTGGTGGTGGTTCTGGTGGTGGTTCT

Whole Sequence

CCGCTTCTAGAGTAATACGACTCACTATAGGGAATACAAGCTACTTGTTC TTTTTGCATACTACAGATTAAAGAGGAGAAATACTAGATGATGCAGAAGA AAAAATCCGCACGCCATTTGAACAAAGTGGCTGAATTAGCCGCAGCACTG CTCCTATCAGCGAGTCCACTGGCGGGAACTTTCCAGTCAGCCGCTTTTGT CCAAGCTGCCAGTCAAGAAACGGACTACAAAGACGACGACGACAAAGGTG GTGGTCAGCTGAAAACCGCTGACCTGCCGGCTGGTCGTGACGAAACCACC TCTTTCGTTCTGGTTGGTGGTGGTTACCCGTACGACGTTCCGGACTACGC TGGTGGTGGTTCTGGTGGTGGTTCTGGTGGTGGTTCTGAAAACCTGTACT TCCAGGGTGGTGGTGGTTCTGGTGGTGGTTCTGGTGGTGGTTCTATGCGT AAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGA TGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTG ATGCAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAA CTACCTGTTCCATGGCCAACACTTGTCACTACTTTCGGTTATGGTGTTCA ATGCTTTGCGAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAGA GTGCCATGCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGAT GACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCT TGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACA TTCTTGGACACAAATTGGAATACAACTATAACTCACACAATGTATACATC ATGGCAGACAAACAAAAGAATGGAATCAAAGTTAACTTCAAAATTAGACA CAACATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATA CTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCC ACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGT CCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAAC TATACAAACATCATCACCATCACCACTAATAAAAATAATAAAAAAGCCGG ATTAATAATCTGGCTTTTTATATTCTCTTACTAGTAGCGGCCGCTGCAG