James P. McDonald Week 3

From OpenWetWare
Revision as of 19:10, 30 January 2013 by James P. McDonald (talk | contribs) (→‎Outline: changed header sizes back)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Biological Terms

  1. Permease: "General term for a membrane protein that increases the permeability of the plasma membrane to a particular molecule, by a process not requiring metabolic energy." [[1]]
  2. Isomerase: "An enzyme that converts molecules into their positional isomers." [[2]]
  3. Oligonucleotides: "Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesised to match a region where a mutation is known to occur, and then used as a probe (oligonucleotide probes)." [[3]]
  4. Dehydrogenase: "Enzyme that oxidizes a substrate by transferring hydrogen to an acceptor that is either NAD/NADP or a flavin enzyme. An enzyme that is used to remove hydrogen from its substrate, which is used in the cytochrome (hydrogen carrier) system in respiration to produce a net gain of ATP." [[4]]
  5. Synthetase: "Enzymes of class 6 in the e classification, catalyse synthesis of molecules, their activity being coupled to the breakdown of a nucleotide triphosphate." [[5]]
  6. Biosynthetic: "Relating to or produced by biosynthesis." [[6]]
  7. Glutamate: "Major fast excitatory neurotransmitter in the mammalian central nervous system." [[7]]
  8. Glutamine: "A crystalline amino acid occurring in proteins; important in protein metabolism. One of the 20 amino acids that are commonly found in proteins." [[8]]
  9. GAP1: "General amino acid permease, a gene found in Saccharomyces cerevisiae." [[9]]
  10. PUT4: "Proline permease, a gene found in Saccharomyces cerevisiae." [[10]]

Outline

Introduction

  • Saccharomyces cerevisiae was grown in various ammonia concentrations and the effects on the growth was observed.
    • A single dilution rate was using with a range of different ammonia concentrations.
    • The ammonia concentrations were varied to observe its effects on gene expression and enzyme activities.
  • The main result of the study was that nitrogen metabolism is dependent on ammonia concentration, not its flux.

Significance

  • Ammonia is the prefferred growth source of Saccharomyces cerevisiae as it results in faster growth.
    • Nitrogen metabolism is regulated by gene expression and enzyme activity.
  • Previous research seems to show that ammonia concentration itself is the most important factor in nitrogen metabolism.
    • But, in these previous studies the cultures have differed in ammonium flux, leaving flux as the possible key factor.
    • This experiment uses cultures with the same level flux, only the ammonium concentrations fed in are different.

Methods

Physiological Parameters

Northern Analyses

Enzyme Activities

Class Links

Journal Entries and Assignments