Kim: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(27 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Image:DHKimlab_logo1.tif|1025px]]
[[Image:DHKimlab_BannerMBTE.tif|1025px]]
<div style="padding: 10px; color: #ffffff; background-color: #8A3324; width: 1025px">  
<div style="padding: 10px; color: #ffffff; background-color: #8A3324; width: 1025px">  
<center>
<center>
Line 19: Line 19:
<div style="padding: right; text-align: left; float: left; padding: .4em .9em .9em ">
<div style="padding: right; text-align: left; float: left; padding: .4em .9em .9em ">
<h3>Overview</h3>
<h3>Overview</h3>
<font size=3>Our research spans the disciplinary boundaries between biomaterials, nanotechnology, and cell mechanobiology with an emphasis on their applications to tissue engineering and regenerative medicine. Through the use of multiscale (nano/micro/meso) fabrication and integration tools, we focus on the development and applications of biomimetic materials/devices/systems and functional tissue engineering models for high-throughput drug screening, stem cell-based therapies, disease modeling, and medical device development. Using engineered microenvironments in combination with quantitative live cell imaging approaches, we are also studying the interplay between mechanical and biochemical signaling in the regulation of cell function and fate decisions that are essential for tissue repair and regeneration following injury, and various developmental events. The ultimate goal of our research is to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic insights into the control of cell-tissue structure and function, and to develop multiscale regenerative technologies for improving human health. </font>
<font size=3>Our research spans the disciplinary boundaries between nanotechnology, biomaterials, and cell mechanobiology with an emphasis on their applications to tissue engineering and regenerative medicine. Through the use of multiscale (nano/micro/meso) fabrication and integration tools, we focus on the development and applications of bio-inspired materials/devices/systems and functional tissue engineering models for elucidating cell biology, drug screening, disease modeling, and stem cell-based therapies. Using engineered microenvironments in combination with quantitative live cell imaging approaches, we are also studying the interplay between mechanical and biochemical signaling in the regulation of cell/tissue function and fate decisions that are essential for tissue repair and regeneration following injury, and various developmental events. The ultimate goal of our research is to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic insights into the control of cell-tissue structure and function, and to develop multiscale regenerative technologies for improving human health. </font>
</div>
</div>


Line 29: Line 29:
<h3>News</h3>  
<h3>News</h3>  
<font size=3>
<font size=3>
* Cameron Nemeth has been given a BMES Undergraduate Design and Research Award for his extended abstract for BMES 2013.  Cameron also received the Washington Research Foundation Fellowship.  Congratulations Cameron! (Sept. 2013)
* Jinsung Kim has been awarded the Henry K. Benson Scholarship Endowment in Chemical Engineering! This award is given in recognition of his progress in academic performance and research activities. Congratulations Jinsung!  (Aug. 2014)
*The Kim lab has been awarded the [https://www.wnf.washington.edu/ WRF] Microfabrication Commercialization Grant. This award will support our work on development of a next generation integrated MEA-nanodevice for drug-induced cardiotoxicity screening. (Nov. 2013)
* Cameron Nemeth has been given a BMES Undergraduate Design and Research Award and the Washington Research Foundation Fellowship.  Congratulations Cameron! (Sept. 2013) [http://depts.washington.edu/bioe/cameron-nemeth-receives-bmes-award-wrf-fellowship/ Read more] 
* Alex Jiao was awarded a NIH T32 Cardiovascular Pathology Training Grant Fellowship. (Aug. 2013).
* Alex Jiao was awarded a NIH T32 Cardiovascular Pathology Training Grant Fellowship. (Aug. 2013).
* Prof. Kim has been awarded the prestigious Young Investigator Award 2013 from the [http://ksea.org/index.php?option=com_content&view=article&id=521:2013yigwinners&catid=11:upcoming-events&Itemid=48 Korean-American Scientists and Engineers Association (KSEA)]. (June 2013)
* Prof. Kim has been awarded the prestigious Young Investigator Award 2013 from the [http://ksea.org/index.php?option=com_content&view=article&id=521:2013yigwinners&catid=11:upcoming-events&Itemid=48 Korean-American Scientists and Engineers Association (KSEA)]. (June 2013)
* Jesse Macadangdang was awarded a NIH Bioengineering Cardiovascular Training Grant Fellowship!  (June 2013)
* Jesse Macadangdang was awarded a NIH Bioengineering Cardiovascular Training Grant Fellowship!  (June 2013)
* Daniel Lih was awarded a summer research fellowship from National Yang-Ming University! (June 2013)
* Prof. Kim joined the editorial board of the [http://www.aspbs.com/jbn.html Journal of Biomedical Nanotechnology] as an Associate Editor. (May 2013)
* Prof. Kim joined the editorial board of the [http://www.aspbs.com/jbn.html Journal of Biomedical Nanotechnology] as an Associate Editor. (May 2013)
* Kim Lab has been awarded an [http://mda.org/research/gaag/dmd-deok-ho-kim-phd Muscular Dystrophy Association (MDA) research grant] to develop bioengineering techniques for growing muscle for use in transplantation into a mouse model of Duchenne muscular dystrophy. (Feb. 2013)
* Kim Lab has been awarded an [http://mda.org/research/gaag/dmd-deok-ho-kim-phd Muscular Dystrophy Association (MDA) research grant] to develop bioengineering techniques for growing muscle for use in transplantation into a mouse model of Duchenne muscular dystrophy. (Feb. 2013)
Line 47: Line 48:
<h3>Featured Publications</h3>  
<h3>Featured Publications</h3>  
<font size=3>
<font size=3>
* A non-transcriptional role for HIF-1α as a direct inhibitor of DNA replication, Science Signaling, vol. 6, pp. ra10, 2013. [http://stke.sciencemag.org/content/vol6/issue262/cover.dtl '''(Featured as a Cover Article)'''] [http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/ra10 Article] [http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/pc5/DC1 Podcast]<br>
 
* Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration, Integrative Biology, Vol. 4, Issue 9,pp. 1019-1033, 2012 [http://pubs.rsc.org/en/journals/journalissues/ib#!issueid=ib004009&type=current&issnprint=1757-9694 '''(Featured Cover Article)''']    [http://pubs.rsc.org/en/content/articlelanding/2012/ib/c2ib20067h Article]<br>
*Thermoresponsive Nanofabricated Substratum for the Engineering of Three-Dimensional Tissues with Layer-by-Layer Architectural Control, ACS Nano, vol. 8, pp. 4430-4439, 2014. [http://pubs.acs.org/doi/abs/10.1021/nn4063962 Article]  
* Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy, Biomaterials, vol. 35, pp. 1478-1486, 2014. [http://www.sciencedirect.com/science/article/pii/S0142961213013239 Article]
* Nanotopography-guided tissue engineering and regenerative medicine, Advanced Drug Delivery Review, vol. 65, pp. 536-558, 2013. [http://www.sciencedirect.com/science/journal/0169409X/65/4 '''(Featured as a Cover Article)'''] [http://www.sciencedirect.com/science/article/pii/S0169409X1200244X Article]  
* Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration, Integrative Biology, Vol. 4, Issue 9,pp. 1019-1033, 2012 [http://pubs.rsc.org/en/journals/journalissues/ib#!issueid=ib004009&type=current&issnprint=1757-9694 '''(Featured as a Cover Article)''']    [http://pubs.rsc.org/en/content/articlelanding/2012/ib/c2ib20067h Article]<br>
* Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors, Science Signaling, vol. 5, issue 227, p. ra41, 2012. [http://stke.sciencemag.org/content/vol5/issue227/cover.dtl '''(Featured as a Cover Article)''']  [http://stke.sciencemag.org/cgi/content/abstract/sigtrans;5/227/ra41 Article]
* Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors, Science Signaling, vol. 5, issue 227, p. ra41, 2012. [http://stke.sciencemag.org/content/vol5/issue227/cover.dtl '''(Featured as a Cover Article)''']  [http://stke.sciencemag.org/cgi/content/abstract/sigtrans;5/227/ra41 Article]
* Engineering neuronal growth cone to promote axon regeneration over inhibitory molecules, Proceedings of the National Academy of Sciences USA, vol. 108, pp. 5057-5062, 2011. [http://www.pnas.org/content/early/2011/03/03/1011258108.full.pdf+html Article]<BR>
* Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of National Academy of Sciences USA, vol.107, pp. 565-570, 2010. [http://www.pnas.org/content/107/2/565.long Article]  [http://www.nibib.nih.gov/HealthEdu/eAdvances/30July10 '''(Highlighted in the National Institute of Biomedical Imaging and Bioengineering)]'''
* Biomimetic nanopatterns as enabling tools for analysis and control of live cells, Advanced Materials, 2010. [http://www.ncbi.nlm.nih.gov/pubmed/20803528 Pubmed], [http://www.hubmed.org/display.cgi?uids=20803528 Hubmed] <BR>
* Microengineered platforms for cell mechanobiology, Annual Review of Biomedical Engineering, vol. 11, pp.203-233, 2009. [http://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-061008-124915?url_ver=Z39.88-2003&rfr_dat=cr_pub%3Dpubmed&rfr_id=ori%3Arid%3Acrossref.org&journalCode=bioeng Article]
* Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of National Academy of Sciences USA, vol.107, pp. 565-570, 2010. [http://www.ncbi.nlm.nih.gov/pubmed/20018748 Article]  [http://www.nibib.nih.gov/HealthEdu/eAdvances/30July10 '''(Highlighted in the National Institute of Biomedical Imaging and Bioengineering)]'''
* Microengineered platforms for cell mechanobiology, Annual Review of Biomedical Engineering, vol. 11, pp.203-233, 2009. [http://www.ncbi.nlm.nih.gov/pubmed/19400708 Article]
</font>
</font>
</div>
</div>
Line 68: Line 70:
<br>
<br>
<font size = 3> '''Our Sponsors''': <br>
<font size = 3> '''Our Sponsors''': <br>
[[Image: AHA.jpg|160px]] &emsp;&emsp;  
[[Image: nsf_Logo.jpg|100px|link=http://mda.org/]] &emsp;&emsp;
[[Image: MDAlogo name.jpg|220px|link=http://mda.org/]] &emsp;&emsp;  
[[Image: NIH banner.png|220px|link = http://www.nih.gov/]] &emsp;&emsp;
[[Image: nsf_Logo.jpg|120px|link=http://mda.org/]] &emsp;&emsp;  
[[Image: AHA.jpg|140px|link = http://www.heart.org/HEARTORG/]] &emsp;&emsp;  
[[Image: Coulter.jpg|120px]]  &emsp;&emsp;  
[[Image: MDAlogo name.jpg|200px|link=http://mda.org/]] &emsp;&emsp;  
[[Image: C4C.png|200px]] &emsp;&emsp;&emsp;&emsp;  <br>
[[Image:MOTIE-logo.jpg|180px|link=http://www.mke.go.kr/language/eng/]] &emsp;&emsp; <br>
[[Image: Lsdf_logo2.gif‎|160px]] &emsp;&emsp;  
[[Image: Coulter.jpg|100px|link =http://www.whcf.org/]]  &emsp;&emsp;  
[[Image: UWlogo.jpg|240px]] &emsp;&emsp;  
[[Image: C4C.png|160px|link = http://depts.washington.edu/uwc4c/]] &emsp;&emsp;&emsp;&emsp;   
[http://www2.clustrmaps.com/user/a76c219e http://www2.clustrmaps.com/stats/maps-no_clusters/www.openwetware.org-wiki-Kim-thumb.jpg]
[[Image: Lsdf_logo2.gif‎|140px|link = http://www.lsdfa.org/]] &emsp;&emsp;  
[[Image: UWlogo.jpg|220px|link = http://www.washington.edu/]] &emsp;&emsp;
[[Image:KSEAlogo.jpg|220px|link = http://www.ksea.org/2013/]] &emsp;&emsp; <br>
<div style="text-align: left;">[http://www2.clustrmaps.com/user/a76c219e http://www2.clustrmaps.com/stats/maps-no_clusters/www.openwetware.org-wiki-Kim-thumb.jpg] </div>






__NOTOC__
__NOTOC__

Revision as of 10:20, 21 August 2014

HOME        RESEARCH        PEOPLE        PUBLICATIONS        INTERNAL        POSITIONS        NEWS        LINKS        OUTREACH        CONTACT       

Overview

Our research spans the disciplinary boundaries between nanotechnology, biomaterials, and cell mechanobiology with an emphasis on their applications to tissue engineering and regenerative medicine. Through the use of multiscale (nano/micro/meso) fabrication and integration tools, we focus on the development and applications of bio-inspired materials/devices/systems and functional tissue engineering models for elucidating cell biology, drug screening, disease modeling, and stem cell-based therapies. Using engineered microenvironments in combination with quantitative live cell imaging approaches, we are also studying the interplay between mechanical and biochemical signaling in the regulation of cell/tissue function and fate decisions that are essential for tissue repair and regeneration following injury, and various developmental events. The ultimate goal of our research is to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic insights into the control of cell-tissue structure and function, and to develop multiscale regenerative technologies for improving human health.

News

  • Jinsung Kim has been awarded the Henry K. Benson Scholarship Endowment in Chemical Engineering! This award is given in recognition of his progress in academic performance and research activities. Congratulations Jinsung! (Aug. 2014)
  • The Kim lab has been awarded the WRF Microfabrication Commercialization Grant. This award will support our work on development of a next generation integrated MEA-nanodevice for drug-induced cardiotoxicity screening. (Nov. 2013)
  • Cameron Nemeth has been given a BMES Undergraduate Design and Research Award and the Washington Research Foundation Fellowship. Congratulations Cameron! (Sept. 2013) Read more
  • Alex Jiao was awarded a NIH T32 Cardiovascular Pathology Training Grant Fellowship. (Aug. 2013).
  • Prof. Kim has been awarded the prestigious Young Investigator Award 2013 from the Korean-American Scientists and Engineers Association (KSEA). (June 2013)
  • Jesse Macadangdang was awarded a NIH Bioengineering Cardiovascular Training Grant Fellowship! (June 2013)
  • Prof. Kim joined the editorial board of the Journal of Biomedical Nanotechnology as an Associate Editor. (May 2013)
  • Kim Lab has been awarded an Muscular Dystrophy Association (MDA) research grant to develop bioengineering techniques for growing muscle for use in transplantation into a mouse model of Duchenne muscular dystrophy. (Feb. 2013)



Featured Publications

  • Thermoresponsive Nanofabricated Substratum for the Engineering of Three-Dimensional Tissues with Layer-by-Layer Architectural Control, ACS Nano, vol. 8, pp. 4430-4439, 2014. Article
  • Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy, Biomaterials, vol. 35, pp. 1478-1486, 2014. Article
  • Nanotopography-guided tissue engineering and regenerative medicine, Advanced Drug Delivery Review, vol. 65, pp. 536-558, 2013. (Featured as a Cover Article) Article
  • Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration, Integrative Biology, Vol. 4, Issue 9,pp. 1019-1033, 2012 (Featured as a Cover Article) Article
  • Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors, Science Signaling, vol. 5, issue 227, p. ra41, 2012. (Featured as a Cover Article) Article
  • Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of National Academy of Sciences USA, vol.107, pp. 565-570, 2010. Article (Highlighted in the National Institute of Biomedical Imaging and Bioengineering)
  • Microengineered platforms for cell mechanobiology, Annual Review of Biomedical Engineering, vol. 11, pp.203-233, 2009. Article


Our Sponsors:
   link = http://www.nih.gov/    link = http://www.heart.org/HEARTORG/         
link =http://www.whcf.org/    link = http://depts.washington.edu/uwc4c/      link = http://www.lsdfa.org/    link = http://www.washington.edu/    link = http://www.ksea.org/2013/