Kim: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(257 intermediate revisions by 10 users not shown)
Line 1: Line 1:
[[Image:Placeholder.png|150px]]
[[Image:DHKimlab_BannerMBTE.tif|1025px]]
<div style="padding: 10px; color: #ffffff; background-color: #000; width: 980px">
<div style="padding: 10px; color: #ffffff; background-color: #8A3324; width: 1025px">  
<center>
<center>
[[Kim | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''HOME''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Research | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''RESEARCH''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Lab Members | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''PEOPLE''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Publications | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''PUBLICATIONS''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Internal | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''INTERNAL''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Positions | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''POSITIONS''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:News | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''NEWS''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Links | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''LINKS''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Outreach | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''OUTREACH''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Kim:Contact | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''CONTACT''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</center>
</div>


[[Kim | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''Home''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Research | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''Research''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Publications | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''Publications''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Lab Members | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''Lab Members''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Positions | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''Positions''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Links | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''Links''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Kim:Internal | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''Internal''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</center>
</div><br>
{| cellspacing="3"  
{| cellspacing="3"  
|- valign="top"
|- valign="top"
|width=327px class="MainPageBG" style="border: 1px solid #000; color: #000; background-color: #ff9933"|
|width=1040x class="MainPageBG" style="background-color: #c8d9dd"|
<div style="clear: right; text-align: left; float: left; padding: .4em .9em .9em">
<div style="padding: right; text-align: left; float: left; padding: .4em .9em .9em ">
<h3>Image</h3>  
<h3>Overview</h3>
 
<font size=3>
 
Our research spans the disciplinary boundaries between nanotechnology, biomaterials, and mechanobiology with an emphasis on their applications to tissue engineering and regenerative medicine. Through the use of multi-scale (nano/micro/meso) fabrication and integration tools, we focus on the development and application of bio-inspired materials/devices and functional tissue engineering models for elucidating regenerative biology, drug screening, disease modeling, and stem cell-based therapies. Using engineered microenvironments in combination with quantitative live cell imaging approaches, we are also studying the intricate interactions between mechanical and biochemical signaling in the regulation of cell/tissue function and fate decisions that are essential for tumor progression and metastasis, tissue repair and regeneration following injury, and various developmental events. The ultimate goal of our research is to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic insights into the control of cell-tissue structure and function, and to develop multi-scale regenerative technologies for improving human health.  
</div>
</font>
 
|width=653px class="MainPageBG" style="border: 1px solid #000; color: #000; background-color: #8FD8D8"|
<div style="padding: .4em .9em .9em">
 
<h3>Welcome to the D. H. Kim Lab</h3>
Our research spans the disciplinary boundaries between biomechanics, nanobiotechnology, and cell biology with an emphasis on their applications to tissue engineering and regenerative medicine. We focuses on the development and applications of biomimetic cell culture models and tissue engineering constructs for studying the intricate interactions between mechanical and biochemical signaling in cell/tissue function and fate decisions that are essential for cancer metastasis, tissue repair and regeneration following injury, and various developmental events.  Using BioMEMS and nanotechnology-based tools, we would like to also bridge the gap between understanding structure-function relationships at molecular and cellular levels, and being able to utilize bioinspired tissue engineering models for drug discovery, stem cell-based therapies, disease diagnostics, and medical device development. The ultimate goal of our research is to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic insights into the control of cell-tissue structure and function, and to develop multiscale regenerative technologies for improving human health.  
</div>
</div>


Line 31: Line 27:
{| cellspacing="3"  
{| cellspacing="3"  
|- valign="top"
|- valign="top"
|width=490px class="MainPageBG" style="border: 1px solid #000; color: #000; background-color: #A6D785"|
|width=490px class="MainPageBG" style="background-color: #A6D785"|
<div style="clear: right; text-align: left; float: left; padding: .4em .9em .9em">
<div style="clear: right; text-align: left; float: left; padding: .4em .9em .9em">
<h3>News</h3>  
<h3>News</h3>  
*
<font size=3>
*
* Peter Kim has been awarded the AHA Predoctoral Fellowship! (Dec. 2014)
*
*The Kim lab has been awarded the [https://www.wnf.washington.edu/ WRF] Microfabrication Commercialization Grant. This award will support our work on development of a next generation integrated MEA-nanodevice for drug-induced cardiotoxicity screening. (Nov. 2013)
* Cameron Nemeth has been given a BMES Undergraduate Design and Research Award and the Washington Research Foundation Fellowship. (Sept. 2013)  [http://depts.washington.edu/bioe/cameron-nemeth-receives-bmes-award-wrf-fellowship/ Read more] 
* Alex Jiao was awarded a NIH T32 Cardiovascular Pathology Training Grant Fellowship. (Aug. 2013).
* Prof. Kim has been awarded the prestigious Young Investigator Award 2013 from the [http://ksea.org/index.php?option=com_content&view=article&id=521:2013yigwinners&catid=11:upcoming-events&Itemid=48 Korean-American Scientists and Engineers Association (KSEA)]. (June 2013)
* Jesse Macadangdang was awarded a NIH Bioengineering Cardiovascular Training Grant Fellowship!  (June 2013)
* Prof. Kim joined the editorial board of the [http://www.aspbs.com/jbn.html Journal of Biomedical Nanotechnology] as an Associate Editor. (May 2013)
* Kim Lab has been awarded an [http://mda.org/research/gaag/dmd-deok-ho-kim-phd Muscular Dystrophy Association (MDA) research grant] to develop bioengineering techniques for growing muscle for use in transplantation into a mouse model of Duchenne muscular dystrophy. (Feb. 2013)
 
 
 
</font>
</div>
</div>




|width=490px class="MainPageBG" style="border: 1px solid #000; color: #000; background-color: #A6D785"|
|width=545px class="green1"|
<div style="clear: right; text-align: left; float: left; padding: .4em .9em .9em">
<div style="clear: right; text-align: left; float: left; padding: .4em .9em .9em">
<h3>Recent Publications</h3>  
<h3>Featured Publications</h3>  
* D.H. Kim, H.J. Lee, Y.K. Lee, J.M. Nam, and A. Levchenko, "'''Biomimetic nanopatterns as enabling tools for analysis and control of live cells,'''" Advanced Materials, 2010. [http://www.ncbi.nlm.nih.gov/pubmed/20803528 Pubmed], [http://www.hubmed.org/display.cgi?uids=20803528 Hubmed] <BR>
<font size=3>
* D.H. Kim, E. Lipke, P. Kim, R. Cheong, S. Edmonds, M. Delannoy, K.Y. Suh, L.Tung, and A. Levchenko, "'''Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs'''," Proceedings of National Academy of Sciences USA, vol.107, pp. 565-570, 2010. [http://www.ncbi.nlm.nih.gov/pubmed/20018748 Pubmed], [http://www.hubmed.org/display.cgi?uids=20018748 Hubmed] <BR>
* D.H. Kim, P. Wong, J.Y. Park, A. Levchenko, and Y. Sun, "'''Microengineered platform for cell mechanobiology'''," Annual Review of Biomedical Engineering, vol. 11, pp.203-233, 2009. [http://www.ncbi.nlm.nih.gov/pubmed/19400708 Pubmed] <BR>


*Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control, ACS Nano, vol. 8, pp. 4430-4439, 2014. [http://pubs.acs.org/doi/abs/10.1021/nn4063962 Article]
* Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy, Biomaterials, vol. 35, pp. 1478-1486, 2014. [http://www.sciencedirect.com/science/article/pii/S0142961213013239 Article]
* Nanotopography-guided tissue engineering and regenerative medicine, Advanced Drug Delivery Review, vol. 65, pp. 536-558, 2013. [http://www.sciencedirect.com/science/journal/0169409X/65/4 '''(Featured as a Cover Article)'''] [http://www.sciencedirect.com/science/article/pii/S0169409X1200244X Article]
* Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration, Integrative Biology, Vol. 4, Issue 9,pp. 1019-1033, 2012 [http://pubs.rsc.org/en/journals/journalissues/ib#!issueid=ib004009&type=current&issnprint=1757-9694 '''(Featured as a Cover Article)''']    [http://pubs.rsc.org/en/content/articlelanding/2012/ib/c2ib20067h Article]<br>
* Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors, Science Signaling, vol. 5, issue 227, p. ra41, 2012. [http://stke.sciencemag.org/content/vol5/issue227/cover.dtl '''(Featured as a Cover Article)''']  [http://stke.sciencemag.org/cgi/content/abstract/sigtrans;5/227/ra41 Article]
* Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of National Academy of Sciences USA, vol.107, pp. 565-570, 2010. [http://www.pnas.org/content/107/2/565.long Article]  [http://www.nibib.nih.gov/HealthEdu/eAdvances/30July10 '''(Highlighted in the National Institute of Biomedical Imaging and Bioengineering)]'''
* Microengineered platforms for cell mechanobiology, Annual Review of Biomedical Engineering, vol. 11, pp.203-233, 2009. [http://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-061008-124915?url_ver=Z39.88-2003&rfr_dat=cr_pub%3Dpubmed&rfr_id=ori%3Arid%3Acrossref.org&journalCode=bioeng Article]
</font>
</div>
</div>
|}
|}
<div style="padding: 10px; color: #ffffff; background-color: #8A3324; width: 1025px">
<center>
[[http://www.uw.edu/ | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''University of Washington''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;
[[http://www.engr.washington.edu/ | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''College of Engineering''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;
[[http://uwmedicine.washington.edu/Pages/default.aspx | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''UW Medicine''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;
[[http://depts.washington.edu/bioe/ | <font face="trebuchet ms" size=3 style="color:#ffffff"> '''UW Bioengineering''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;
</center>
</div>
<br>
<font size = 3> '''Our Sponsors''': <br>
[[Image: nsf_Logo.jpg|100px|link=http://mda.org/]] &emsp;&emsp;
[[Image: NIH banner.png|220px|link = http://www.nih.gov/]] &emsp;&emsp;
[[Image: AHA.jpg|140px|link = http://www.heart.org/HEARTORG/]] &emsp;&emsp;
[[Image: MDAlogo name.jpg|200px|link=http://mda.org/]] &emsp;&emsp;
[[Image:MOTIE-logo.jpg|180px|link=http://www.mke.go.kr/language/eng/]] &emsp;&emsp; <br>
[[Image: Coulter.jpg|100px|link =http://www.whcf.org/]]  &emsp;&emsp;
[[Image: C4C.png|160px|link = http://depts.washington.edu/uwc4c/]] &emsp;&emsp;&emsp;&emsp; 
[[Image: Lsdf_logo2.gif‎|140px|link = http://www.lsdfa.org/]] &emsp;&emsp;
[[Image: UWlogo.jpg|220px|link = http://www.washington.edu/]] &emsp;&emsp;
[[Image:KSEAlogo.jpg|220px|link = http://www.ksea.org/2013/]] &emsp;&emsp; <br>
<div style="text-align: left;">[http://www2.clustrmaps.com/user/a76c219e http://www2.clustrmaps.com/stats/maps-no_clusters/www.openwetware.org-wiki-Kim-thumb.jpg] </div>






__NOTOC__
__NOTOC__
<html>
<a href="http://www2.clustrmaps.com/counter/maps.php?url=http://www.openwetware.org/wiki/Kim" id="clustrMapsLink"><img src="http://www2.clustrmaps.com/counter/index2.php?url=http://www.openwetware.org/wiki/Kim" />
</a>
</html>

Revision as of 00:33, 19 June 2016

HOME        RESEARCH        PEOPLE        PUBLICATIONS        INTERNAL        POSITIONS        NEWS        LINKS        OUTREACH        CONTACT       

Overview

Our research spans the disciplinary boundaries between nanotechnology, biomaterials, and mechanobiology with an emphasis on their applications to tissue engineering and regenerative medicine. Through the use of multi-scale (nano/micro/meso) fabrication and integration tools, we focus on the development and application of bio-inspired materials/devices and functional tissue engineering models for elucidating regenerative biology, drug screening, disease modeling, and stem cell-based therapies. Using engineered microenvironments in combination with quantitative live cell imaging approaches, we are also studying the intricate interactions between mechanical and biochemical signaling in the regulation of cell/tissue function and fate decisions that are essential for tumor progression and metastasis, tissue repair and regeneration following injury, and various developmental events. The ultimate goal of our research is to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic insights into the control of cell-tissue structure and function, and to develop multi-scale regenerative technologies for improving human health.

News

  • Peter Kim has been awarded the AHA Predoctoral Fellowship! (Dec. 2014)
  • The Kim lab has been awarded the WRF Microfabrication Commercialization Grant. This award will support our work on development of a next generation integrated MEA-nanodevice for drug-induced cardiotoxicity screening. (Nov. 2013)
  • Cameron Nemeth has been given a BMES Undergraduate Design and Research Award and the Washington Research Foundation Fellowship. (Sept. 2013) Read more
  • Alex Jiao was awarded a NIH T32 Cardiovascular Pathology Training Grant Fellowship. (Aug. 2013).
  • Prof. Kim has been awarded the prestigious Young Investigator Award 2013 from the Korean-American Scientists and Engineers Association (KSEA). (June 2013)
  • Jesse Macadangdang was awarded a NIH Bioengineering Cardiovascular Training Grant Fellowship! (June 2013)
  • Prof. Kim joined the editorial board of the Journal of Biomedical Nanotechnology as an Associate Editor. (May 2013)
  • Kim Lab has been awarded an Muscular Dystrophy Association (MDA) research grant to develop bioengineering techniques for growing muscle for use in transplantation into a mouse model of Duchenne muscular dystrophy. (Feb. 2013)



Featured Publications

  • Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control, ACS Nano, vol. 8, pp. 4430-4439, 2014. Article
  • Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy, Biomaterials, vol. 35, pp. 1478-1486, 2014. Article
  • Nanotopography-guided tissue engineering and regenerative medicine, Advanced Drug Delivery Review, vol. 65, pp. 536-558, 2013. (Featured as a Cover Article) Article
  • Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration, Integrative Biology, Vol. 4, Issue 9,pp. 1019-1033, 2012 (Featured as a Cover Article) Article
  • Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors, Science Signaling, vol. 5, issue 227, p. ra41, 2012. (Featured as a Cover Article) Article
  • Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of National Academy of Sciences USA, vol.107, pp. 565-570, 2010. Article (Highlighted in the National Institute of Biomedical Imaging and Bioengineering)
  • Microengineered platforms for cell mechanobiology, Annual Review of Biomedical Engineering, vol. 11, pp.203-233, 2009. Article


Our Sponsors:
   link = http://www.nih.gov/    link = http://www.heart.org/HEARTORG/         
link =http://www.whcf.org/    link = http://depts.washington.edu/uwc4c/      link = http://www.lsdfa.org/    link = http://www.washington.edu/    link = http://www.ksea.org/2013/