Kim:Publications

From OpenWetWare
Revision as of 01:26, 26 June 2013 by Dhkim21c (talk | contribs)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

HOME        RESEARCH        PEOPLE        PUBLICATIONS        INTERNAL        POSITIONS        NEWS        LINKS        OUTREACH        CONTACT       


PUBLICATIONS (H-Index: 22, TOTAL CITATIONS:> 1500 updated on June, 2013)


Summary: 48 journal papers, 15 issued or pending patents, 76 conference proceedings and abstracts, 1 book and 8 book chapters. Please direct any questions regarding publications or reprints to Dr. Kim; [deokho@uw.edu]

           

     

Selected Journal Publications



2013

[J49] J. Tsui, W. H. Lee, S. Pun, J. K. Kim, and D.H. Kim, "Microfluidics-assisted drug carrier production and drug screening," Advanced Drug Delivery Review (invited).

[J48] B. Lee, A. Jiao, S.J. Yu, J.B. You, D.H. Kim#, and S.K. Im#, “Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering,” Acta Biomaterialia, 2013. ( # corresponding authors)(in press)

[J47] J. H. Kim, K. S. Choi, Y. Kim, K.-T. Lim, H. Seonwoo, Y. Park, D.H. Kim, P.H. Choung, C.-S. Cho, S.Y. Kim, Y.H. Choung, and J. H. Chung, "Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells," Journal of Biomedical Materials Research: Part A, 2013. (in press)

[J46] M. E. Hubbi, Kshitiz, D.M. Gilkes, S. Rey, C. C. Wong, W. Luo, D.H. Kim, C. V. Dang, A. Levchenko, and G. Semenza, “A non-transcriptional role for HIF-1α as a direct inhibitor of DNA replication,” Science Signaling, vol. 6, pp. ra10, 2013. (Featured as a Cover Article; Highlighted in Science)Article; Podcast

[J45] Y. Suhail, Kshitiz, J. Lee, M. Walker, D.H. Kim, M.D. Brennan, J. Bader, and A. Levchenko, “Modeling intercellular transfer of biomolecules through tunneling nanotubes,” Bulletin of Mathematical Biology, 2013. (In press). Article

[J44] H. N. Kim, A. Jiao, N.S. Hwang, M.S. Kim, D.H. Kang, D.H. Kim, and K. Suh, "Nanotopography-guided tissue engineering and regenerative medicine" Advanced Drug Delivery Review Vol. 64, pp. 536-558, 2013. (Featured as a Cover Article) Article


2012

[J43] D.H. Kim, Kshitiz, R. R. Smith, P. Kim, E. H. Ahn, H.N. Kim, E Marban, K.Y. Suh, and A. Levchenko, "Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration" Integrative Biology, Vol. 4, Issue 9, pp. 1019-1033, 2012 (Featured as a Cover Article) Article

[J42] Kshitiz, J.S. Park, P. Kim, W. Helen, A.J. Engler, A. Levchenko, and D.H. Kim#, “Control of stem cell fate and function by engineering physical microenvironments” Integrative Biology, Volume 9, pp. 1008-1018, 2012. Article

[J41] Kshitiz, M.E. Hubbi, E.H. Ahn, J. Downey, D.H. Kim, S. Rey, J. Afzal, A. Kundo, G.L. Semenza, R. M. Abraham, and A. Levchenko, “Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors,” Science Signaling Vol. 5, Issue. 227, ra41, 2012. (Featured as a Cover Article) Article

[J40] H. N. Kim, D.H. Kang, M.S. Kim, A. Jiao, D.H. Kim, and K. Suh, "Patterning methods for polymers in cell and tissue engineering," Annals of Biomedical Engineering Vol. 40 No. 6, 1339-1355, 2012. Article

[J39] J. Kim*, D.H. Kim*, K. T. Lim, H. S. Woo, S. H. Park, Y.R. Kim, Y. Kim, Y.H. Choung, P.-H. Choung, and J. H. Chung, "Charged nanomatrices as efficient platforms for modulating cell adhesion and shape," Tissue Engineering Part C: Methods vol. 18, pp. 913-923 (Featured as a Cover Article) Article

[J38] T. Garzon-Muvdi, P. Schiapparelli, C. Rhys, H. Guerrero-Cazares, C. Smith, D.H. Kim, L. Kone, H. Farber, D.Y. Lee, S.S. An, A. Levchenko*, A. Quiñones-Hinojosa* "Regulation of Brain Tumor Dispersal by NKCC1 Through a Novel Role in Focal Adhesion Regulation," PLoS Biology, Vol. 10, Issue. 5, e1001320, 2012. Article

[J37] D.H. Kim#, P. Provenzano, C.L. Smith, and A. Levchenko#, “Matrix nanotopography as regulator of cell function,” Journal of Cell Biology vol. 197 no. 3 pp. 351-360, 2012.( # corresponding authors) Article

[J36] J.S. Park, H.N. Kim, D.H. Kim, A. Levchenko, and K.Y. Suh, “Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology,” IEEE Nanobioscience Vol. 11, pp. 28-36, 2012. Article

2011

[J35] K. Gupta, D.H. Kim, D. Beebe, and A. Levchenko, “Micro and nanoengineering for stem cell biology: the promise with a caution,” Trends in Biotechnology, Vol. 29, pp.399-408, 2011. Article

[J34] J. Kim, I. Hwang, D. Britain, T.D. Chung, Y. Sun, and D.H. Kim, "Microfluidic approaches for gene delivery and gene therapy," Lab on a Chip, vol. 11, pp. 3941 - 3948, 2011. Article

[J33] E. Hur*, I.H. Yang*, D.H. Kim*, J. Byun, W.-L. Xu, S. Jilafu, R. Cheong, A. Levchenko, N. Thakor, and F. Zhou, “Engineering neuronal growth cone to promote axon regeneration over inhibitory molecules,” Proceedings of the National Academy of Sciences USA, vol. 108, pp. 5057-5062, 2011. ( *Equal contribution). Article

[J32] D.H. Kim and Y. Sun, “Micro- and nanoengineered tools as emerging platforms for cell mechanobiology,” IET Micro and Nano Letters, vol. 6, pp. 289, Editorial, 2011.

2010~2003 (Before Tenure-Track Appointment)

[J31] D.H. Kim, H.J. Lee, Y.K. Lee, J.M. Nam, and A. Levchenko, "Biomimetic nanopatterns as enabling tools for analysis and control of live cells," Advanced Materials, vol. 22, pp.4551-4566, 2010. Pubmed, Hubmed

[J30] K. Gupta*, D.H. Kim*, D. Ellison, C. Smith, A. Kundu, K.Y. Suh, J. Tuan, and A. Levchenko, “Lab-on-a-chip devices as an emerging platform for stem cell biology,” Lab on a Chip, vol. 10, pp.2019-2031, 2010. (*Equal contribution) Pubmed, Hubmed (Selected as one of the ten most accessed Lab on a Chip articles in August)

[J29] M.H. You, M.K. Kwak, D.H. Kim, K. Kim, A. Levchenko, D.Y. Kim, and K.Y. Suh, “Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media,” Biomacromolecules, vol. 11, pp.1856-1862, 2010. Pubmed, Hubmed

[J28] J. Park*, D.H. Kim*, G. Kim, Y.H. Kim, E. Choi, and A. Levchenko, “Simple haptotactic gradient generation within a triangular microfluidic channel,” Lab on a Chip, vol. 10, pp.2130-2138, 2010. (*Equal contribution) Pubmed, Article

[J27] D.H. Kim, E. Lipke, P. Kim, R. Cheong, S. Edmonds, M. Delannoy, K.Y. Suh, L.Tung, and A. Levchenko, "Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs," Proceedings of National Academy of Sciences USA, vol.107, pp. 565-570, 2010. Pubmed, Hubmed (Highlighted in the National Institute of Biomedical Imaging and Bioengineering)

[J26] D.H. Kim, P. Wong, J.Y. Park, A. Levchenko, and Y. Sun#, "Microengineered platforms for cell mechanobiology," Annual Review of Biomedical Engineering, vol. 11, pp.203-233, 2009. (# denotes corresponding authors) Pubmed

[J25] D.H. Kim, C. Seo, K. Han, K. Kwon, A. Levchenko and K.Y. Suh, "Guided cell migration on microtextured substrates with variable local density and anisotropy," Advanced Functional Materials, vol.19, pp.1579-1586, 2009. (Featured as a Frontispiece) Pubmed, Hubmed

[J24] D.H. Kim, K. Han, K. Gupta, K. Kwon, K.Y. Suh, and A. Levchenko, "Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients," Biomaterials, vol. 30, pp. 5433-5444, 2009. Pubmed, Hubmed

[J23] J. Kim, M. Junkin, D.H. Kim, S.L. Kwon, Y.S. Shin, P. K. Wong, and B. K. Gale, "Applications, techniques, and microfluidic interfacing for nanoscale biosensing," Microfluidics and Nanofluidics, vol. 7, pp. 149-167, 2009. http://dx.doi.org/10.1016/j.snb.2005.11.051

[J22] D.H. Kim, J.Y. Park, M.K. Kim, and K.S. Hong, "AFM-based identification of the dynamic properties of globular proteins: simulation study," Journal of Mechanical Science and Technology, vol. 22, no.11, pp. 2203-2212, 2008.

[J21] D.H. Kim, J.Y. Park, K.Y. Suh, P. Kim, S.K. Choi. S.C. Ryu, S.H. Park, S.H. Lee and B. Kim, "Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices," Sensors and Actuators B, vol. 117, pp.391-400, 2006. http://dx.doi.org/10.1016/j.snb.2005.11.051

[J20] K.Y. Suh, H.E. Jeong, D.H. Kim, A.R. Singh, and E.S. Yoon, "Capillarity-assisted fabrication of nanostructures using less permeable mold for nanotribological applications," Journal of Applied Physics, vol.100, 2006. http://dx.doi.org/10.1063/1.2222071

[J19] S. Park, S. Ryu, S. Ryu, D.H. Kim, and B. Kim, “Contractile force measurements of cardiac myocytes using a micro-manipulation system,” Journal of Mechanical Science and Technology, vol.20, no.5, pp.668-674, 2006.

[J18] D.H. Kim, P. Kim, I.S. Song, J.M. Cha, S.H. Lee, B. Kim, and K.Y. Suh, "Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures," Langmuir, vol.22, no.12, pp.5419-5426, 2006. > Pubmed, Hubmed

[J17] E.S. Yoon, R.A. Singh, H.S. Kong, B. Kim, D.H. Kim, H.E. Jeong, and K.Y. Suh, “Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer,” Tribology Letters, vol.21, pp.31-37, 034303, 2006. (the Society of Tribologists and Lubrication Engineers, Surface Engineering Best Paper Award) http://dx.doi.org/10.1007/s11249-005-9005-4

[J16] D.H. Kim, C.N. Hwang, Y. Sun, B. Kim, S.H. Lee, and B. Nelson, "Mechanical analysis of chorion softening in pre-hatching stages of zebrafish embryos," IEEE Transactions on Nanobioscience, vol.5, no.2, pp.89-94, 2006. Pubmed, Hubmed

[J15] D.H. Kim, K.S. Hong, and K.S. Yi, “Driving load estimation with the use of estimated turbine torque,” JSME International Journal Series C, vol.49, pp.163-171, 2006.

[J14] B. Kim, H.J. Kang, D.H. Kim, and J.O. Park, “A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components," International Journal of Advanced Manufacturing Technology, vol.28, pp.379-386, 2006.

[J13] J.Y. Park, S.M. Kim, D.H. Kim, B. Kim, S.J. Kwon, J.O. Park, and K.I. Lee, "Identification and control of a sensorized microgripper for micromanipulation," IEEE/ASME Transactions on Mechatronics, vol.10, no.5, pp.601-606, 2005. http://dx.doi.org/10.1109/TMECH.2005.856103

[J12] P.N. Kim, D.H. Kim, B. Kim, S.K. Choi, S.H. Lee, A. Khademhosseini, R. Langer, and K.Y. Suh, "Fabrication of nanostructures of poly(ethylene glycol) for application to protein adsorption and cell adhesion," Nanotechnology, vol.16, pp.2420-2426, 2005. http://dx.doi.org/10.1088/0957-4484/16/10/072

[J11] B. Kim, D.H. Kim, J.H. Jung, and J.O. Park, "A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators," Smart Materials and Structures, vol. 14, pp.1579-1585, 2005. http://dx.doi.org/10.1088/0964-1726/14/6/051

[J10] D.H. Kim, M.G. Lee, B. Kim, and Y. Sun, "A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric sensors: a numerical and experimental study," Smart Materials and Structures, vol.14, pp.1265-1272, 2005. http://dx.doi.org/10.1088/0964-1726/14/6/019

[J9] D.H. Kim, Y. Sun, S. Yun, S.H. Lee, and B. Kim, "Investigating chorion softening of zebrafish embryos with a microrobotic force sensing system," Journal of Biomechanics, vol.38, no.6, pp.1359-1363, 2005. Pubmed, Hubmed

[J8] A. Haake, A. Neild, D.H. Kim, J.E. Ihm, Y. Sun, J. Dual, and B.K. Ju, "Manipulation of cells using an ultrasonic pressure field," Ultrasound in Medicine and Biology, vol.31, no.6, pp.857-864, 2005. Pubmed, Hubmed

[J7] D.H. Kim, B. Kim, B.K. Ju, and J.O. Park, “State of the art in nano-biomanipulation technologies,” Journal of Control, Automation and Systems Engineering, vol.11, no.4, pp.353-362, 2005.

[J6] D.H. Kim, B. Kim, and H.J. Kang, "Development of a piezoelectric polymer-based sensorized microgripper for micromanipulation and microassembly", Microsystem Technologies, vol.10, no.4, pp.275-280, 2004. http://dx.doi.org/10.1007/s00542-003-0330-y

[J5] D.H. Kim, B. Kim, and J.O. Park, “Implementation of a piezoresistive MEMS cantilever for nanoscale force measurements in micro/nano robotic applications,” Journal of Mechanical Science and Technology, vol.18, no.5, 789-797, 2004.

[J4] D.H. Kim, K.-J. Yang, K.S. Hong, J.O. Hahn, and K.I. Lee, “Smooth shift control of automatic transmissions using a robust adaptive scheme with intelligent supervision,“ International Journal of Vehicle Design, vol.32, no.3/4, pp.250-272, 2003.

[J3] J.Y. Park, D.H. Kim, T.S. Kim, B. Kim, and K.I. Lee “Design and performance evaluation of a 3-DOF mobile microrobot for micro manipulation,” Journal of Mechanical Science and Technology, vol.17, no.9, pp.1268-1275, 2003.

[J2] D.H. Kim, B. Kim, S. Youn, and H.J. Kang, “Cellular force sensing for force feedback-based biological cell injection,” Transactions of the KSME, A, vol.27, no.12, pp.2079-2084, 2003.

[J1] D.H. Kim, B. Kim, H.J. Kang, and S.M. Kim, “Design, fabrication and performance evaluation of a sensorized superelastic alloy microrobot gripper,” Transactions of the KSME, A, vol.27, no.10, pp.1772- 1777, 2003.

Conference Proceedings and Abstracts


[C76] J. Kim, D.H. Kim, K.T. Lim, H. Seonwoo, S.H. Park, Y.R. Kim, Y.H. Choung, P.H. Choung, and J.H. Chung, “Charged nanomatrices as efficient platforms for modulating cell adhesion and shape,” 5 th IEEE International Conference on Nano/Molecular Medicine and Engineering, Jeju, Korea, November 9-12, 2011.

[C75] H.S. Yang, S.H. Bhang, D.H. Kim, and B.S. Kim, “In situ cardiomyogenic differentiation of implanted bone marrow mononuclear cells by heparin-conjugated PLGA nanosphere with transforming growth factor-beta1,” International Society for Stem Cell Research 9th Annual Meeting, Toronto, Ontario, Canada June 15-18, 2011.

[C74] K. Yuan, D.A. Chesler, D.H. Kim, C. Shaifer, C. Pendleton, A. Levchenko, A. Quinones-Hinojosa, “Glioblastoma-derived hepatocyte growth factor / c-Met axis in human adipocyte-derived mesenchymal stem cell migration,” Maryland Stem Cell Research Symposium, MD USA, September 22, 2010.

[C73] T. Garzon-Muvdi, C. Aprhys, C. Smith, D.H. Kim, L. Kone, H. Farber, A. Levchenko, and A. QuinonesHinojosa, “Role of the interaction between EGF and Cation-Chloride cotransporter (NKCC1) in glioblastoma multiforme invasion and migration,” Maryland Stem Cell Research Symposium, MD USA, September 22, 2010.

[C72] K. Gupta, J. Downey, D.H. Kim, M. Hubbi, S. Rey, A. Kundu, E.H. Ahn, R. Abraham, and A. Levchenko, "Substratum rigidity controls cardiosphere-derived cells mediated cardiac tissue repair via regulation of p190RhoAGAP", International Society for Stem Cell Research 8th Annual Meeting, San Francisco, CA USA June 16-19, 2010.

[71] K. Gupta, D.H. Kim, K.Y. Suh, and A. Levchenko, "Nano-control of stem cell differentiation: the path to control of myogenic potential and building a cardiac repair patch," 6th Annual Stem Cell Research and Therapeutics Conference, May 27-28, 2010.

[C70] A. Levchenko, D.H. Kim, K.Y. Suh, and K. Gupta, "Nano-topographically defined scaffolds for heart regeneration and repair," Society for Biological Engineering’s 2nd International Conference on Stem Cell Engineering, May 02-05, 2010.

[C69] C.L. Smith*, T. Garzon-Muvdi*, D.H. Kim*, P. Kim, A. Levchenko, and A. Quinones-Hinojosa, "Enhanced migration of neural stem cells and brain tumor stem cells on nanopatterned surfaces," Hopkins Nanobio Symposium on Nanoscience for Neuroscience and Neurosurgery, May 17, 2009.

[C68] D.H. Kim, C.H. Seo, K. Han, K. Kwon, A. Levchenko, and K.Y. Suh, "Guided cell migration on microtextured substrates with variable local density and anisotropy," Gordon Research Conference on Gradient Sensing and Directed Cell Migration, Galveston, Texas, March 29-April 3, 2009.

[C67] D.H. Kim*, R. Smith*, P. Kim, K. Gupta, E. Marban, K.Y. Suh, and A. Levchenko, "Tissue engineered cardiac stem cell grafts for repairing heart with myocardial infarction," Keystone Symposium on Cardiac Diseases: Development, Regeneration, and Repair, Asheville, North Carolina, USA, March 15-20, 2009.

[C66] E.-M. Hur, D.H. Kim, W.-L. Xu, A. Levchenko, and F. Zhou, “Regulation of axonal regeneration by manipulation of growth cone cytoskeleton,” the Society for Neuroscience's 38th annual meeting, Nov 16, 2008.

[C65] C.H. Seo, D.H. Kim, P. Kim, A. Levchenko, and K.Y. Suh, “Guided cell migration by density variation of surface nanopatterns,” Gordon Research Conference on Signal Transduction by Engineered Extracellular Matrices, July 6-11, 2008.

[C64] D.H. Kim*, J. Wang*, K. Gupta, K.W. Kim, Y.H. Kim, K.Y. Suh, and A. Levchenko, “Interplay between extracellular topography and adhesion in optimizing rapid cell migration,” the Society for Physical regulation in Biology and Medicine’s 26th Scientific Conference, Jan. 9-11, 2008.

[C63] E. Lipke*, D.H. Kim*, P. Kim, M. Delannoy, K.Y. Suh, A. Levchenko, and L. Tung, “Engineered cardiac tissue structure and electrophysiology directed by nanopatterned PEG hydrogels,” AICHE Annual Meeting, Salt Lake City, Utah, USA, November 4-9, 2007.

[C62] E. Lipke*, D.H. Kim*, P. Kim, M. Delannoy, K.Y. Suh, A. Levchenko, and L. Tung, “Nanopatterned PEG influences structure and function of engineered cardiac tissue,” BMES Annual Fall Meeting, Los Angeles, California, USA, Sept 26-29, 2007.

[C61] D.H. Kim, Y.H. Kim, K.W. Kwon, Y. Li, J. Wang, K.Y. Suh, and A. Levchenko "Nanoengineering focal adhesions regulates cell shape and locomotion," Institute for Nano-Bio Technology Symposium, Baltimore, Maryland, April 27, 2007.

[C60] D.H. Kim*, E. Lipke*, P. Kim, M. Delannoy, K.Y. Suh, L. Tung, and A. Levchenko “Fabrication and functional characterization of nanoengineered cardiac tissues,” Keystone Symposium on Tissue Engineering and Developmental Biology, Snowbird, Utah, USA, April 12-17, 2007.

[C59] D.H. Kim, K.W. Kwon, Y.H. Kim, Y. Li, K.Y. Suh, and A. Levchenko “Nanoengineering focal adhesions regulates cell shape and locomotion,” Annual Johns Hopkins School of Medicine Graduate Student Association Poster Session, Baltimore, USA, April 6, 2007.

[C58 D.H. Kim, K.W. Kwon, Y.H. Kim, Y. Li, J. Wang, K.Y. Suh, and A. Levchenko “Nanoengineering focal adhesions regulates cell shape and locomotion,” Keystone Symposium on Nanotechnology in Biomedicine, Tahoe City, USA, February 11-16, 2007.

[C57] D.H. Kim, P. Kim, I.S. Song, J.M. Cha, S.H. Lee, B. Kim, and K.Y. Suh, “Guided Three-Dimensional Growth of Cardiomyocytes on Nanostructured PEG Scaffolds,” Celebrating 30 Years of Robert Langer’s Science, Boston, USA, July 14-16, 2006.

[C56] D.H. Kim, J. Wang, K.W. Kwon, K.Y. Suh, and A. Levchenko, “A Microfluidic Platform Integrated with a Nano- and Micropatterned Extracellular Matrices for Analysis of Cell Locomotion,” Gordon Research Conference on Signal Transduction by Engineered Extracellular Matrices, July 2-7, 2006.

[C55] D.H. Kim, P. Kim, I.S. Song, J.M. Cha, S.H. Lee, B. Kim, and K.Y. Suh, “Guided Three-Dimensional Growth of Cardiomyocytes on Nanostructured PEG Scaffolds,” Gordon Research Conference on Signal Transduction by Engineered Extracellular Matrices, July 2-7, 2006.

[C54] P. Kim, D.H. Kim, B. Kim, S.K. Choi, S.H. Lee, A. Khademhosseini, R. Langer, and K.Y. Suh, “Fabrication of Nanostructures of Poly(ethylene glycol) and its Application to Protein Adsorption and Cell Adhesion,” The 9th International Conference on Miniaturized Systems for Chemistry and Life Science (μTAS), Boston, USA, Oct. 9-13, 2005.

[C53] D.H. Kim, P. Kim, K.Y. Suh, S.K. Choi, S.H. Lee, and B. Kim, “Modulation of Adhesion and Growth of Cardiac Myocytes by Surface Nanotopography,” Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, Sept 1-4, 2005.

[C52] E.S. Yoon, A.R. Singh, H.S. Kong, B. Kim, D.H. Kim, K.Y. Suh, and H.E. Jeong, “Tribological Properties of Nano/Micro-Patterned PMMA Surfaces on Silicon Wafer,” ASME World Tribology Congress, Washington D.C. USA, Sep. 12-16, 2005.

[C51] S.H. Park, S.C. Ryu, D.H. Kim, and B. Kim, “Contractile Force Measurements of Cardiac Myocytes Using a Micromanipulation System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada, Aug. 2-6, 2005.

[C50] S.C. Ryu, S.H. Park, D.H. Kim, and B. Kim, “Comparative quantification of contractile force of cardiac muscles using a micromechanical force sensing system,” International Conference on Control, Automation and System, 2005. (Best Presentation Award)

[C49] P. Kim, D.H. Kim, B. Kim, S. Choi, S.H. Lee, A. Khademhosseinid, R. Langer, K.Y. Suh, “Fabrication of nanostructures of PEG and its application”, KSME Annual Spring Meetings, 2005.

[C48] D.H. Kim, K.Y. Suh, P. Kim, S.K. Choi, S.H. Lee, and B. Kim, “Micropatterning of Cardiomyocytes Using Adhesion-Resistant Polymeric Microstructures,” The 13th International Conference on Solid State Sensors, Actuators and Microsystems, pp.1664-1667, Seoul, Korea, June 5-9, 2005.

[C47] D.H. Kim, J.Y. Park, K.Y. Suh, P. Kim, S.K. Choi, S.H. Lee, and B. Kim, “Three-Dimensionally Patterned Cardiomyocytes with High Activity for Powering Bio-Hybrid Microdevices,” the 3rd Annual International IEEE Conference on Microtechnologies in Medicine and Biology, Hawaii, pp.233-236, USA, May 12-15, 2005.

[C46] D.H. Kim, J.Y. Park, B. Kim, and K.S. Hong, “AFM-based Identification of the Dynamic Properties of Globular Proteins,” IEEE International Conference on Industrial Electronics, Busan, Korea, Nov. 2-6, 2004.

[C45] D.H. Kim, M.G. Lee, B. Kim, and J.H. Shim, “A Superelastic Alloy Microgripper with Embedded Electromagnetic Actuators and Piezoelectric Sensors,” SPIE Optomechatronic Micro/Nano Components, Devices, and Systems, Philadelphia, USA, Oct. 25-28, 2004.

[C44] D.H. Kim*, A. Haake*, Y. Sun, A.P. Neild, J.E. Ihm, J. Dual, J.A. Hubbell, B.K. Ju, and B.J. Nelson, “HighThroughput Cell Manipulation Using Ultrasound Fields,” IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), pp.2571-2574, Sept., 2004. (* the first two authors contributed equally)

[C43] D.H. Kim, Y. Sun, S. Yun, B. Kim, C.N. Hwang, S.H. Lee, and B.J. Nelson, “Mechanical Property Characterization of the Zebrafish Embryo Chorion,” IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), pp.5061-5064, Sept., 2004.

[C42] D.H. Kim, S. Yun, and B. Kim, “Mechanical Force Response of Single Living Cells using a Microrobotic System,” IEEE International Conference on Robotics and Automation, pp.5013-5018, New Orleans, LA, USA, April 26-May 1, 2004.

[C41] D.H. Kim, B. Kim, S. Yun, and S.J. Kwon, “Cellular Force Measurement for Force Reflected Biomanipulation,” IEEE International Conference on Robotics and Automation, pp.2412-2417, New Orleans, LA, USA, April 26-May 1, 2004.

[C40] J.Y. Park, S.M. Kim, D.H. Kim, B. Kim, S.J. Kwon, J.O. Park, and K.I. Lee, “Advanced Controller Design and Implementation of a Sensorized Microgripper for Micromanipulation,” IEEE International Conference on Robotics and Automation, pp.5025-5032, New Orleans, LA, USA, April 26-May 1, 2004.

[C39] B. Kim, D.H, Kim, G.T. Park, and J.O. Park, “Hybrid Microassembly with Sensory Feedback for Photonics Applications," The 2nd International Conference on Mechatronics and Information Technology, Jecheon, Korea, December 4-6, 2003.

[C38] D.H. Kim, B. Kim, H.J. Kang and J.O. Park, “Force Feedback-based Microassembly System Integrated with a Piezoelectrically Sensorized Microgripper,” The 2nd International Conference on Mechatronics and Information Technology (ICMIT), Jecheon, Korea, December 4-6, 2003.

[C37] D.H. Kim, S. Yun, B. Kim, C.N. Hwang, and S.H. Lee, “Measurement of Softening of the Chorion of Zebrafish Embryos During Early Development Including Prehatching Stage," International Symposium of Development and Reproduction, vol.3, PB-43, Seoul, Korea, October 30, 2003.

[C36] B. Kim, D.H. Kim, J.Y. Park, Y.H. Kim, S.J. Kwon, H.J. Kang, and S.H. Jung, “Autonomous Biomanipulation Factory for Manipulating Individual Embryo Cells," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.74-88, Las Vegas, USA, October 27-November 1, 2003. (Invited Paper, Workshop on Microrobotics for Biomanipulation)

[C35] B. Kim, H.J. Kang, D.H. Kim, G.T. Park, and J.O. Park, “Flexible Microassembly System based on Hybrid Manipulation Scheme," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2061-2066, Las Vegas, USA, October 27-November 1, 2003.

[C34] D.H. Kim, B. Kim, H.J. Kang, and B.K. Ju, “Development of a Piezoelectric Polymer-based Sensorized Microgripper for Micromanipulation and Microassembly,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1864-1869, Las Vegas, USA, October 27-November 1, 2003.

[C33] S. Yun, D.H. Kim, B. Kim, S.H. Lee, and G.T. Park, "Real-Time Force Sensing in the Envelope of Zebrafish Egg during Micropipette Penetration," International Conference on Control, Automation and System, pp. 2451-2456, Kyeongju, Korea, October 22-25, 2003.

[C32] J.H. Shim, S.Y. Cho, Y.I. Cho, D.H. Kim, and B. Kim, "Design and Control of a New Micro End-Effector for Biological Cell Manipulation," International Conference on Control, Automation and System, pp. 2445-2450, Kyeongju, Korea, October 22-25, 2003.

[C31] D.H. Kim, B. Kim, H.J. Kang, and S.M. Kim, “Fabrication and Sensorization of a Superelastic Alloy Microrobot Gripper using Piezoelectric Polymer Sensors,” KSPE Spring Annual Meeting, pp. 251-255, June, 2003. (in Korean)

[C30] D.H. Kim, B. Kim, S. Youn, and H.J. Kang, “Cellular Force Measurement for Force Feedback-Based Biomanipulation,” KSPE Spring Annual Meeting, pp.237-240, June, 2003. (in Korean)

[C29] J.Y. Park, D.H. Kim, B. Kim, and K.I. Lee, “System Identification for Motion of Proteins using an AFMbased Nanorobotic Manipulation,” The 6th International Conference on Modeling and Simulation of Microsystem, San Francisco, USA, February 23-27, 2003.

[C28] S.J. Lee, K. Kim, D.H. Kim, J.O. Park, and G.T. Park, “Multiple Magnification Images Based Micropositioning for 3D Microassembly,” The Seventh International Conference on Control, Automation, Robotics and Vision (ICARCV’02), December 2-5, Singapore, pp.914-919, 2002.

[C27] T.S. Kim, J.Y. Park, D.H. Kim, and K.I. Lee, “Compact 3-DOF Mobile Microrobot for Micro/Nano Manipulation System,” International Conference on Control, Automation and System, pp. 947-951, Muju, Korea, October, 2002.

[C26] S.M. Kim, K. Kim, J.H. Shim, B. Kim, D.H. Kim, and C.C. Chung, “Position and Force Control of a Sensorized Microgripper,” International Conference on Control, Automation and System, pp. 319-322, Muju, Korea, October, 2002.

[C25] D.H. Kim, J.Y. Park, B. Kim, and K. Kim, “Modeling and Simulation for Nanorobotic Manipulation with an AFM probe,” International Conference on Control, Automation and System, pp. 2151-2156, Muju, Korea, October, 2002.

[C24] K. Kim, D.H. Kim, S.J. Lee, and J.H. Lee, “Hybrid Microassembly System for Three-Dimensional MEMS Components,” International Workshop on Microfactory, pp. 21-24, Minnesota, USA, September, 2002.

[C23] S.J. Lee, K. Kim, D.H. Kim, J.O. Park, and G.T. Park, “Vision-based Micromanipulation,” International Workshop on Microfactory, pp. 141-144, Minnesota, USA, September, 2002.

[C22] D.H. Kim, T.S. Kim, K. Kim, and B. Kim, “Motion Planning of an AFM-based Nanomanipulator in a Sensor-based Nanorobotic Manipulation System,” International Workshop on Microfactory, pp. 137-140, Minnesota, USA, September, 2002.

[C21] B. Kim, K. Kim, H.J. Kang, D.H. Kim, J.H. Lee, and S.M. Kim, "Hybrid Microassembly using Intelligent User Interface", The 10th G7-Advanced Manufacturing System Workshop, Seoul, Korea, Sept 6th, 2002 (in Korean).

[C20] D.H. Kim, K. Kim and J.W. Hong, “Implementation of Self-Sensing MEMS Cantilevers for Nanomanipulation,” The 4th Korean MEMS conference, pp.120-125, 2002.

[C19] S.J. Lee, K. Kim, D.H. Kim, J.O. Park, and G.T. Park. “Multiple Vision Based Micromanipulation System for 3D-Shaped Micro Parts Assembly”, International Conference on Control, Automation and System, pp.789-790, Jeju, Korea, October, 2001.

[C18] E.H. Song, D.H. Kim, K. Kim, and J.H. Lee., "Intelligent User Interface for Teleoperated Microassembly", International Conference on Control, Automation and System, pp. 1287-1290, Jeju, Korea, October , 2001.

[C17] D.H. Kim, Y.K. Kim, W. Choe., and. K. Kim, "Teleoperated Microassembly and its Application to Peg-inHole Task", International Conference on Control, Automation and System, pp. 784-788, Jeju, Korea, October , 2001.

[C16] S.J. Lee, K. Kim, D.H. Kim, J.O. Park, and G.T. Park., "Recognizing and Tracking 3D-Shaped Micro Parts Using Multiple Visions for Micromanipulation", IEEE International Symposium on Micromechatronics and Human Science, pp. 203-210, Nagoya, Japan, September, 2001.

[C15] D.H. Kim, K. Kim, K.Y. Kim., and. S.M. Cha, "Dexterous Teleoperation for Micro Parts Handling based on Haptic/Visual Interface", IEEE International Symposium on Micromechatronics and Human Science, pp.211- 217, Nagoya, Japan, September, 2001.

[C14] K. Kim, S.M. Cha, and D.H. Kim, "Micro Manipulation Considering Human Interface," The 9th G7- Advanced Manufacturing System Workshop, Kyongju, Korea, Sept 9th, 2001 (in Korean).

[C13] S.J. Lee, K. Kim, D.H. Kim, J.O. Park, and G.T. Park, “Recognization of 3D-Shaped Micro Parts using Multiple Vision for Micromanipulation,” KIEE Summer Annual Meeting, 2001. (in Korean)

[C12] D.H. Kim, K. Kim, K.Y. Kim and J.O. Park, "Dexterous Teleoperation of Microassembly System," KSME Spring Annual Meeting, Vol.B, pp. 158~163. (KSME 01S182), 2001. (in Korean)

[C11] D.H. Kim, K.Y. Kim., and K. Kim., "A Micro Manipulation System based on Teleoperation Techniques," The 32rd International Symposium on Robotics (ISR 2001), Seoul, Korea, April, 2001.

[C10] K.Y. Kim, D.H. Kim, Y.K. Jeong, K. Kim and J.O. Park., "A Biological Man-Machine Interface for Teleoperation," The 32th International Symposium on Robotics (ISR 2001), Seoul, Korea, April, 2001.

[C9] B.K. Shin, D.H. Kim, J.O. Hahn, and K.I. Lee, "Adaptive Learning Shift Control of Smooth Shift Transients for Automotive Power Transmission Systems," Asian Control Conference, pp.1564-1569, Shanghai, China, July 4-7, 2000.

[C8] D.H. Kim, B.K. Shin, J.K. Choi and K.I. Lee, "Analysis on Dynamic Characteristics of Line Pressure Regulating System in Automatic Transmissions using Sensitivity Method," Proc. of KSPE Spring Annual Meeting, pp. 487-491, 2000 (in Korean).

[C7] D.H. Kim, B.K. Shin, K.S. Yi, and K.I. Lee, "Vehicle Driving Resistance Load Estimation for Longitudinal Motion Control," FISITA'2000, Seoul, Korea, June 12-15, 2000.

[C6] J.W Hur, J.O. Hahn, B.K. Shin, D.H. Kim., and K.I. Lee, "Identification of Automatic Transmission Shifting Hydraulic System Equipped with Proportional Solenoid Valve Using Neural Network," The 3rd International Workshop on Advanced Mechatronics (IWAM'99), pp. 60-64, ChunChon, Korea, December 2-4, 1999.

[C5] D.H. Kim, B.K. Shin, K.S. Yi, and K.I. Lee, "Observer Based Estimation of Driving Resistance Load for Vehicle Longitudinal Motion Control," Korean Automatic Control Conference-International, vol. E pp.185- 188, YongIn, Korea, October 14-16, 1999.

[C4] J.W. Hur, B.K. Shin, D.H. Kim, and K.I. Lee, "Identification of Automatic Transmission Shifting Hydraulic System Equipped with Proportional Solenoid Valve using Neural Networks," Korean Automatic Control Conference, vol. D, pp. 25-28, 1999. (in Korean)

[C3] D.H. Kim, B.K. Shin, J.O. Hahn and K.I. Lee, "Adaptive Shift Control Algorithm with Intelligent Supervision in Automatic Transmissions," KSME Fall Annual Meeting, vol.A, pp. 866-871, 1999. (Best Paper Award in Vehicle Dynamics and Control Session). (in Korean)

[C2] D.H. Kim, B.K. Shin, K.S. Yi and K.I. Lee, "Road Load Estimation for Smooth Shift Control of Automatic Transmission," KSPE Spring Annual Meeting, pp. 191-196, 1999. (Best Student Paper Award) (in Korean).

[C1] D.H. Kim, J.W. Hur, B.K. Shin, and K.I. Lee, "Smooth Shift Control of an Automatic Transmission using the Estimated Speed and Acceleration Signals,” KSME Spring Annual Meeting, vol.A., pp.167-174, 1999. (in Korean)

Book and Book Chapters


[B6] E. Jabbari, A. Khademhosseini, L.P. Lee, D.H. Kim, and A. Ghaemmaghami, Editors, “Handbook of Biomimetics and Bioinspiration,” World Scientific Publishers, 2012

[B5] R. Singh, E.S. Yoon, K.Y. Suh, and D.H. Kim, “Biomimetic surfaces for tribological applications in micro/nano-devices,” Nano-Tribology and Materials Issues in MEMS, S.S. Kumar, N. Satyanarayana, S.C. Lim (Eds.), Springer-Verlag, invited chapter, 2011.

[B4] K. Gupta, D.H. Kim#, D. Allison, C. Smith, and A. Levchenko#, “Using lab-on-a-chip technologies for stem cell biology,” Stem Cells and Regenerative Medicine, K. Appasani (Eds.), Springer Science (Humana) Press, invited chapter, pp. 483-498, 2010. (# corresponding authors)

[B3] K.J. Chang, D.H. Kim, S.M. Kim, A. Levchenko, and K.Y. Suh, “Micropatterned polymer structures for cell and tissue engineering,” Biological Responsive Hybrid Biomaterials, E. Jabbari and A. Khademhosseini (Eds.), Artech House Publishers, invited chapter, pp. 101-120, 2010.

[B2] D.H. Kim, A. Levchenko, and K.Y. Suh, “Engineered surface nanotopography for controlling cell-substrate interactions,” Micro- and Nanoengineering of the Cell Microenvironment: Technologies and Applications, A. Khademhosseini, J. Borenstein, S. Takayama, and M. Toner (Eds.), Artech House Publishers, invited chapter, pp. 185-208, 2008.

[B1] Y. Sun, D.H. Kim, and A. Hashemi, “Biological cell sorting automation,” Life Science Automation: Fundamentals and Applications, M.J. Zhang, B.J. Nelson and R.A. Felder (Eds.), Artech House Publishers, invited chapter, pp. 411-434, 2007.



Patents


[P10] D.-H. Kim and K. Kim “Multi-Degrees-of Freedom Dexterous Telerobotic System for Microassembly,” Korean Patent #0483790, issued April 8, 2005.

[P9] D.-H. Kim, B. Kim, J.Y. Park, and J.O. Park, “Autonomous Bio-Manipulation Factory System for Manipulating Single Cells,” Korea Patent #0475098, issued February 24, 2005.

[P8] D.-H. Kim, K. Kim, E.H. Song, and H.J. Kang, “Method and Device for Assembling MEMS Components,” Korean Patent #0473348, issued February 16, 2005.

[P7] D.-H. Kim, K. Kim, S.J. Lee, and G.T. Park, “Apparatus and Method for Assembling MEMS Components Using Image of Multiple Magnification,” Korea Patent #0466095, issued January 4, 2005.

[P6] D.-H. Kim, B. Kim, Y.H. Kim, and J.O. Park, “Smart Pipette System and Method for Manipulating Individual Bio Cells,” Korea Patent #0466094, issued January 4, 2005.

[P5] D.-H. Kim, B. Kim, K. Kim, J.H. Shim, S.M. Kim and S.H. Lee, “Microrobot Gripping Apparatus,” Korea Patent #10-0505145, issued July 22, 2005.

[P4] D.-H. Kim, B. Kim, J.Y. Park, and J.O. Park, “Autonomous Bio-Manipulation Factory System for Manipulating Single Cells,” United States Patent #7011970, issued March 14, 2006.

[P3] D.-H. Kim, J.Y. Park, B. Kim, B.K. Ju, and Y. Sun, “Cell Separation System Using Ultrasound Field and Traveling Wave Dielectrophoresis,” Korea Patent #10-0594408, issued June 21, 2006.

[P2] D.-H. Kim, B. Kim, Y.H. Kim, and J.O. Park, “Smart Pipette for Cell Manipulation and Manipulation Method for Using the Smart Pipette,” United States Patent #7501096 B2, issued March 10, 2009 (Application date: 2004.3.22, Application No.: 10/805,871).

[P1] D.-H. Kim and K. Kim “Multi-Degrees-of Freedom Dexterous Telerobotic System for Microassembly,” United States Patent (Application date: 2002. 9.17, Application No.: 10/245,067).


Invited Talks and Seminars (selected)


[I43] “Mechanobiological regulation of cell function and tissue regeneration with nanoengineered matrix cues,” Department of Mechanical Engineering, University of Washington, Seattle, WA, USA, November 22, 2011.

[I42] “Biomimetic nanopatterns as enabling tools for analysis and control of cell function and tissue regeneration,” Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea, Nov., 4, 2011.

[I41] “Biomimetic nanopatterns as enabling tools for analysis and control of cell function and muscle regeneration,” Department of Biochemistry and Cell Biology, Kyungbook National University, Daegu, Korea, Nov., 4, 2011.

[I40] “Controlling Cardiac Function on the Nano-Scale: A Biomimetic Approach and Intervention,” The 5th International Conference on Cell Therapy, Seoul, Korea, November 1, 2011.

[I39] “Biomimetic nanopatterns as enabling tools for analysis and control of cell function and tissue regeneration,” The 10th International Conference on Nanoimprint and Nanoprint Technology, JeJu, Korea, October 19-21, 2011.

[I38] “Nanotopographically-defined biomaterials for analysis and control of cell function and tissue regeneration,” Department of Chemical Engineering, University of Washington, Seattle, WA, USA, May 26, 2011.

[I37] “Micro and nanotechnologies for bioengineering regenerative medicine,” Department of Bioengineering, University of Washington, Seattle, WA, USA, May 17, 2011.

[I36] "Biomimetic nanopatterns as enabling tools for analysis and control of cell function and tissue regeneration,” Department of Bioengineering, University of Washington, Seattle, WA, USA, May 5, 2010.

[I35] "Analysis and control of cell function and tissue regeneration with nanoscale cues,” Department of Chemical Engineering and Materials Science, Chung Ang University, Seoul, Korea, December 9, 2010.

[I34] "Engineering cellular function and tissue regeneration with local matrix cues: implications for wound healing, cancer invasion, and stem cell therapy,” Department of Bioengineering, Hanyang University, Seoul, Korea, December 8, 2010.

[I33] "Analysis and control of cellular function and tissue regeneration with nanoscale matrix cues,” Department of Bionano Engineering, Hanyang University, An-San, Korea, December 7, 2010.

[I32] "Regulation of cell function and tissue regeneration with matrix cues: implications for wound healing, cancer invasion, and tissue engineering,” College of Bionano Technology, Kyungwon University, Sungnam, Korea, December 6, 2010.

[I31] "Nanoscale material cues regulate the structure and function of stem cells and macroscopic cardiac tissue construct,” School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea, December 3, 2010.

[I30] "Regulation of cellular and multicellular form and function with nanoscale cues: implications for wound healing, cancer metastasis, and tissue engineering,” College of Pharmacy, Kyung Hee University, Seoul, Korea, December 2, 2010.

[I29] "Controlling cellular function and tissue regeneration with nanoscale matrix cues,” Department of Mechanical Engineering, Sogang University, Seoul, Korea, December 1, 2010.

[I28] "Controlling cellular function and tissue regeneration with nanoscale material cues,” Department of Material Science and Engineering, KAIST, Daejon, Korea, November 30, 2010.

[I27] "Engineering cellular function and tissue regeneration with local matrix cues: implications for wound healing, cancer invasion, and stem cell therapy,” Samsung Medical Center, Seoul, Korea, November 29, 2010.

[I26] "Control of cellular and multicellular function with nanoscale matrix cues: implications for wound healing, cancer invasion, and tissue engineering,” Department of Biotechnology, Yonsei University, Seoul, Korea, November 25, 2010.

[I25] "Engineering cellular function and tissue regeneration with local matrix cues: implications for wound healing, cancer invasion, and stem cell therapy,” Division of Biomedical Science, Korea Institute of Science and Technology, Seoul, Korea, November 24, 2010.

[I24] "Nanoscale matrix cues regulates the structure and function of macroscopic cardiac tissue constructs,” Annual Bioscience and Engineering Symposium (ABES), Natcher Auditorium, National Institute of Health (NIH) Campus, Bethesda, MD, USA, November 6, 2010.

[I23] "Regulation of cellular and multicellular form and function with nanoscale cues: implications for wound healing, cancer metastasis, and tissue engineering,” Department of Bioengineering, University of Washington, Seattle, WA, USA, May 20, 2010.

[I22] "Mechanical control of cellular function and tissue regeneration,” Department of Mechanical Engineering, Stanford University, Stanford, CA, USA, May 13, 2010.

[I21] “Mechanochemical regulation of cellular and multicellular form and function using nanoengineered extracellular matrices: implications for wound repair, cancer metastasis, and tissue engineering”, 2010 Weintraub Award Symposium, Seattle, May 7, 2010.

[I20] "Regulation of cellular and multicellular form and function with nanoscale cues: implications for wound healing, cancer metastasis, and tissue engineering,” Department of Bio and Brain Engineering, KAIST, Daejeon, Korea, April 29, 2010.

[I19] "Nanotopographically-defined biomaterials for controlling cell function and tissue regeneration,” Department of Bioengineering, University of California at Riverside, Riverside, CA, USA, April 26, 2010.

[I18] "Mechanochemical regulation of cellular and multicellular form and function with nanoscale cues: implications for wound healing, cancer metastasis, and tissue engineering,” Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA, April 22, 2010.

[I17] "Mechanochemical regulation of cellular and multicellular form and function with nanoscale cues: implications for wound healing, cancer metastasis, and tissue engineering,” Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, USA, April 19, 2010.

[I16] "Mechanochemical regulation of cellular and multicellular form and function with nanoscale cues: implications for wound repair, cancer metastasis, and tissue engineering,” Johns Hopkins School of Medicine and the Whiting School of Engineering, Baltimore, MD, USA, March, 30, 2010.

[I15] "Mechanochemical regulation of multicellular form and function with nanoscale cues: implications for cancer metastasis, wound repair, and tissue engineering,” Baltimore Life Scientists Association, Baltimore, MD, USA, Feb., 23, 2010.

[I14] “Multi-scale mechanobiology for cell and tissue engineering using nano/micropatterned biomaterials,” Korea Institute of Machine and Materials, Daejeon, Korea, Feb., 6, 2009.

[I13] “Multi-scale mechanobiology for cell and tissue engineering using nano/micropatterned biomaterials,” Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea, Feb., 3, 2009.

[I12] “Analysis and engineering of cell function with nanoscale cues”, BME Student Seminar Series, Johns Hopkins University, Baltimore, January 23, 2009.

[I11] “Regulation of cell function by local force and geometry sensing: implications for biology and regenerative medicine,” Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea, Dec., 11, 2008.

[I10] “Regulation of cell function by local force and geometry sensing: implications for biology and regenerative medicine,” Department of Biomedical Engineering, Korea University, Seoul, Korea, Dec., 11, 2008.

[I9] “Regulation of cell function by local force and geometry sensing: implications for integrative biology and regenerative medicine,” Department of Mechanical Engineering, POSTECH, Pohang, Korea, Dec., 10, 2008.

[I8] “Sensing by touch in tumors, hearts, and stem cells: contact-mediated signaling and function of living cells on chips,” Nano-Bio Research Center, Korea Institute of Science and Technology, Seoul, Korea, Dec., 9, 2008.

[I7] “Regulation of cell function by local force and geometry sensing: implications for tissue engineering and biology,” Department of Mechanical Engineering, KAIST, Daejeon, Korea, Dec., 8, 2008.

[I6] “Sensing by touch: contact-mediated signaling and function of living cells on chips,” Interdisciplinary Graduate Program of Bioengineering and Micro Thermal System Research Center, Seoul National University, Seoul, Korea, Dec., 5, 2008.

[I5] “Nano-engineering the cell-matrix interface: implications for tissue engineering and cell-based regenerative therapies,” Baltimore Life Scientists Association, Baltimore, MD, USA, Nov., 15, 2008.

[I4] “Biomicrorobotics and BioMEMS for cell bioengineering: from single cell manipulation to cell separation,” Laboratoire d'Automatique de Besançon (LAB), UMR CNRS, France, April 15, 2004.

[I3] “Microrobotic devices and MEMS-based cell chips for biomedical applications,” Laboratoire de systèmes robotiques, Institut de Production et Robotique, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, Feb. 24, 2004.

[I2] “Micromechatronics for microassembly and biomanipulation,” Institute of Robotics and Intelligent Systems, Swiss Federal Institute of Technology – Zurich (ETH Zurich), Switzerland, Nov., 28, 2003.

[I1] “Robotic manipulation at the micro/nanoscale,” special workshop on “Paradigm Shift in Next Generation Robotic Technology in Industry: Micro-Nano Robot,” Korea Machine Tool Manufactures’ Association, Seoul, Korea, July 24, 2002.