Knight:Evolving Reshmaverters/Promoter library design: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 10: Line 10:
  ----------------TTGCTT-----------------TATAAT-GATT CATAAATTTGAGAGAGGAGTT (good promoter clearance?) <cite>Kammerer-EMBO-1986</cite>
  ----------------TTGCTT-----------------TATAAT-GATT CATAAATTTGAGAGAGGAGTT (good promoter clearance?) <cite>Kammerer-EMBO-1986</cite>
  ----------------TTGACT-----------------GATACT------CA------------------- (repressible, low K<sub>ON</sub>?)<cite> Lanzer-PNAS-1988</cite>
  ----------------TTGACT-----------------GATACT------CA------------------- (repressible, low K<sub>ON</sub>?)<cite> Lanzer-PNAS-1988</cite>
===Constant promoter===
                  -35                    -10        +1
                ______                ______      _
  TTTATCAAAAAGAGTGTTGACTTAAAAT<font style="background-color: yellow">cccacgcgtggG</font>ATACTTAGATTCATAAATTTGAGAGAGGAGTT (novel promoter design for RBS screen)
  TTTATCAAAAAGAGTGTTGACTTAAAAT<font style="background-color: yellow">cccacgcgtggG</font>ATACTTAGATTCATAAATTTGAGAGAGGAGTT (novel promoter design for RBS screen)
====Questions====
#Is this promoter too strong?  Near consensus -35 and -10 with a TG dinucleotide at -14.
#Do I include too much extraneous sequence?  These promoters are longer to reflect those found in papers.


===Libraries===
===Libraries===
Line 34: Line 43:
*A high k<sub>ON</sub> (rate of complex formation between RNA polymerase and promoter) correlates inversely with repressibility.  High k<sub>ON</sub> may result in RNAP outcompeting the repressor for the regulatory region binding.  High regulatory region clearance rates enable strong transcription initiation and allow for repressor binding.<cite>Lanzer-PNAS-1988</cite>
*A high k<sub>ON</sub> (rate of complex formation between RNA polymerase and promoter) correlates inversely with repressibility.  High k<sub>ON</sub> may result in RNAP outcompeting the repressor for the regulatory region binding.  High regulatory region clearance rates enable strong transcription initiation and allow for repressor binding.<cite>Lanzer-PNAS-1988</cite>
*+1 base should be an A with 6-7 bases between end of -10 hexamer and +1. <cite>Lanzer-PNAS-1988, Kammerer-EMBO-1986</cite>
*+1 base should be an A with 6-7 bases between end of -10 hexamer and +1. <cite>Lanzer-PNAS-1988, Kammerer-EMBO-1986</cite>
*Use the -2 operator site because it binds the homodimer more tightly.  (But it is less modular).


*How can we design promoters with low k<sub>ON</sub> but high clearance rates for improved repressibility?
*How can we design promoters with low k<sub>ON</sub> but high clearance rates for improved repressibility?

Revision as of 16:00, 24 April 2006

Promoter library design

In progress!

Promoter architecture

                 -35                    -10        +1
                ______                 ______       _
----------------TTGACA-----------------TATAAT----- CA------------------- (consensus)
----------------TTGCTT-----------------TATAAT-GATT CATAAATTTGAGAGAGGAGTT (good promoter clearance?) [1]
----------------TTGACT-----------------GATACT------CA------------------- (repressible, low KON?)[2]

Constant promoter

                 -35                    -10        +1
                ______                 ______       _
TTTATCAAAAAGAGTGTTGACTTAAAATcccacgcgtggGATACTTAGATTCATAAATTTGAGAGAGGAGTT (novel promoter design for RBS screen)

Questions

  1. Is this promoter too strong? Near consensus -35 and -10 with a TG dinucleotide at -14.
  2. Do I include too much extraneous sequence? These promoters are longer to reflect those found in papers.

Libraries

                 -35                    -10        +1
                ______                 ______       _
TTTATCAAAAAGAGTGTTGNNNnnnnnncccacgcgtggGATANTTAGATTCATAAATTTGAGAGAGGAGTT (screen -35 and -10, 12bp operator)
TTTATCAAAAAGAGTGTTGNNNnnnncccacgcgcgtggGATANTTAGATTCATAAATTTGAGAGAGGAGTT (screen -35 and -10, 14bp operator)
TTTATCAAAAAGAGTGTTGNNNnnnnnncccacgcgtggGATANTTAGAcccacgcgtggGAGAGAGGAGTT (screen -35 and -10, 12bp operator in two locations)

Operator

 0 site operator: cccacgcgcgtggg (14bp)
-2 site operator: cccacgc  gtggg (12bp) (higher affinity)

Brainstorming

How could these regulatory regions be redesigned to be repressible?

Comments welcome

  • Repressor sites tend to fall between the -35 and -10 regions and/or downstream of the -10 (around the +1). (Not upstream of the -35). [3, 4]
  • Binding of the repressor dimer to the promoter may lead to DNA bending rendering binding of more dimers unfavorable. Perhaps a single binding site is preferable?
  • The TG sequence at -16 is causing the regulatory regions to be too strong in the derepressed state. The RNA polymerase is "winning" the competition for binding with the repressor. Perhaps this dinucleotide should be removed. [5, 6]
  • A high kON (rate of complex formation between RNA polymerase and promoter) correlates inversely with repressibility. High kON may result in RNAP outcompeting the repressor for the regulatory region binding. High regulatory region clearance rates enable strong transcription initiation and allow for repressor binding.[2]
  • +1 base should be an A with 6-7 bases between end of -10 hexamer and +1. [1, 2]
  • Use the -2 operator site because it binds the homodimer more tightly. (But it is less modular).
  • How can we design promoters with low kON but high clearance rates for improved repressibility?
    • KON and promoter occupancy by RNAP is determined by the -35 and -10 hexaners. Closer to consensus sequences means high kON and more stable RNAP-promoter complexes. [7]
    • An AT rich region around the transcription start site may lead to better promoter clearance? [1, 7]

Existing promoters

The following promoters have been tested and are not repressible under my testing conditions.

Heterodimers:
                         -35                    -10
Promoter1 cacgtgtgcgtgggTTGACAcgtgtgcgtgggaagtcGATACTgagcaca
Promoter2*              TTGACAcgtgtgcgtgggaagtcGATACTtagattcacgtgtgcgtggg
Promoter3 cacgtgtgcgtgggTTGACAcgtgtgcgtgggaagtcGATACTtagattcacgtgtgcgtggg
Promoter4 cacgtgtgcgtgggTTGACAcacgtgtgcgtgggaatGATACTgagcaca
Promoter5               TTGACAcacgtgtgcgtgggaatGATACTtagattcacgtgtgcgtggg
Promoter6 cacgtgtgcgtgggTTGACAcacgtgtgcgtgggaatGATACTtagattcacgtgtgcgtggg
Homodimers:
                    -35                   -10
BBa_R2000 agtttattcTTGACAtggtcccacgcgcgtggGATACTacgtcag
BBa_R2001 agtttattcTTGACAtggtcatattacggtgaGATACTcccacgcgcgtggg
BBa_R2002 agtttattcTTGACAtggtcccacgcgcgtggGATACTcccacgcgcgtggg

Relevant work

  1. Kammerer W, Deuschle U, Gentz R, and Bujard H. Functional dissection of Escherichia coli promoters: information in the transcribed region is involved in late steps of the overall process. EMBO J. 1986 Nov;5(11):2995-3000. DOI:10.1002/j.1460-2075.1986.tb04597.x | PubMed ID:3539590 | HubMed [Kammerer-EMBO-1986]
  2. Lanzer M and Bujard H. Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8973-7. DOI:10.1073/pnas.85.23.8973 | PubMed ID:3057497 | HubMed [Lanzer-PNAS-1988]
  3. Collado-Vides J, Magasanik B, and Gralla JD. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev. 1991 Sep;55(3):371-94. DOI:10.1128/mr.55.3.371-394.1991 | PubMed ID:1943993 | HubMed [Collado-Vides-MicrobioRev-1991]
  4. Gralla JD. Transcriptional control--lessons from an E. coli promoter data base. Cell. 1991 Aug 9;66(3):415-8. DOI:10.1016/0092-8674(81)90001-5 | PubMed ID:1868543 | HubMed [Gralla-Cell-1991]
  5. Burr T, Mitchell J, Kolb A, Minchin S, and Busby S. DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters: a systematic study. Nucleic Acids Res. 2000 May 1;28(9):1864-70. DOI:10.1093/nar/28.9.1864 | PubMed ID:10756184 | HubMed [Burr-NAR-2000]
  6. Voskuil MI, Voepel K, and Chambliss GH. The -16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli. Mol Microbiol. 1995 Jul;17(2):271-9. DOI:10.1111/j.1365-2958.1995.mmi_17020271.x | PubMed ID:7494476 | HubMed [Voskuil-MolMicrobiol-1995]
  7. Ellinger T, Behnke D, Bujard H, and Gralla JD. Stalling of Escherichia coli RNA polymerase in the +6 to +12 region in vivo is associated with tight binding to consensus promoter elements. J Mol Biol. 1994 Jun 17;239(4):455-65. DOI:10.1006/jmbi.1994.1388 | PubMed ID:8006961 | HubMed [Ellinger-JMB-1994]
  8. Lutz R and Bujard H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 1997 Mar 15;25(6):1203-10. DOI:10.1093/nar/25.6.1203 | PubMed ID:9092630 | HubMed [Lutz-NAR-1997]
  9. Besse M, von Wilcken-Bergmann B, and Müller-Hill B. Synthetic lac operator mediates repression through lac repressor when introduced upstream and downstream from lac promoter. EMBO J. 1986 Jun;5(6):1377-81. DOI:10.1002/j.1460-2075.1986.tb04370.x | PubMed ID:3015603 | HubMed [Besse-EMBO-1986]

All Medline abstracts: PubMed | HubMed