LabName:Alcazar: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(231 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:Alcazar_lab.png|900px]]
[[Image:Alcazarlab_logo.jpg|900px]]
<div style="padding: 40px; color: #ffffff; width: 800px">
<div style="padding: 40px; color: #ffffff; width: 900px">
<font face="calibri" style="color:#000000" font size="3">
<font face="calibri" style="color:#000000" font size="3">
**** New lab webpage hosted at University of Barcelona servers***
Please visit: http://www.ub.edu/portal/web/dp-bsma/stress


<div id="right menu" style="width:250px; padding: 1em 2em; float:left;">
<div id="right menu" style="width:250px; padding: 1em 2em; float:left;">
{{Template:Alcazar Vertical Menu}}
{{Template:Alcazar Vertical Menu}}
</div>
</div>
<font face="calibri" style="color:#000000" font size="4"><br>
'''''Dear visitor,'''''<br>
<br> Welcome to the Molecular Genetics of Plant Stress Tolerance Lab (Ruben Alcazar & A.F. Tiburcio Labs) ''' at the Department of Biology, Healthcare & Environment of the University of Barcelona. <br><br>
We're a recently created joint research group that investigates the '''adaptation of plants to local environments'''. We focus on the evolutionary adaptation of plant populations to '''abiotic and biotic stresses''', which are major challenges for plant survival under the current climate change predictions. Derived from our research, we investigate ways for improving stress protection.<br>
<font face="calibri" style="color:#000000" font size="4"><br>
For a more detailed view of our research, please have a look at our [http://alcazar.openwetware.org/Research.html Research Projects] and [http://alcazar.openwetware.org/Publications.html Scientific Publications] sections. You can follow an updated list of our activities and publications in the NEWS section below. For any other enquires, do not hesitate to contact us directly.<br><br>
<font face="helvetica" style="color:#000000" font size="2">
<br><br><br><br><br><br><br><br>
----
<font face="helvetica" style="color:#000001" font size="3">


<font face="calibri" style="color:#000000" font size="5">
<br>
<br>
'''''Genetics & Evolution of Plant-Environment Interactions'''''<br><br>
'''1. POLYAMINE PERCEPTION AND SIGNALING'''
<font face="calibri" style="color:#000000" font size="4">
<div id="right menu" style="width:275px; padding: 1em 2em; float:left;">
Our lab studies the adaptation of plants to local environments through a transversal approach involving molecular biology, population genetics, evolution and biochemistry.
[[Image:Polyamines.jpg|300px]]
We focus on the natural adaptation of plants to the current challenges of climate change.<br>
</div>
<font face="calibri" style="color:#DBA901" font size="4">
<br>
<br>
'''Evolution of the immune system receptor repertoire. ''' <br>
<font face="calibri" style="color:#000000" font size="4">
<font face="calibri" style="color:#000000" font size="4">
We're currently studying the evolution of NB-LRR immune-receptor genes in nature that condition defense against evolving pathogens and hybrid incompatibilities within species.<br><br>
Our research laboratory has long-standing experience in the field of plant polyamines, for which we performed a number of omics approaches and established genetic evidence for their role in abiotic stress protection.
<font face="calibri" style="color:#DBA901" font size="4">
 
'''Naturally occurring variation for PA levels.''' <br>
 
Our previous research pointed to interactions of polyamines with hormones and other stress-related metabolites. Our current goal is to investigate how polyamines are perceived by the plant, which early signaling components are involved, and how this is shaped by the environment.
 
 
We’re making use of background knowledge from different disciplines to gain insight into polyamine perception and signaling, for which little is known in plants. We’re making use of genetics of natural variation, reverse genetics, molecular biology and plant-microbe interactions to unravel how polyamines are sensed and how this relates to the local microbiota.
 
 
Our final goal is to provide novel approaches for crop protection against abiotic and biotic stresses.
 
 
Key words: stress tolerance, drought, salinity, freezing tolerance, priming, ROS, crop protection, microbiome, rhizosphere, polyamines, natural variation, transcriptional regulation, metabolon, modulon.
 
 
'''2. MOLECULAR EVOLUTION OF DISEASE RESISTANCE IN PLANTS''' <br>
<font face="calibri" style="color:#000000" font size="4">
<font face="calibri" style="color:#000000" font size="4">
Polyamines are known protective compounds against abiotic and biotic stresses in plants. Our lab studies the genetic basis for the natural variation in polyamine levels in natural and domesticated populations. <br><br>
----
<font face="calibri" style="color:#DBA901" font size="3">
In our lab, we make use of the extensive natural variation of [https://en.wikipedia.org/wiki/Arabidopsis_thaliana ''Arabidopsis thaliana''] populations to answer key fundamental questions:
 
* '''How plants adapt to local environments including the microbiota?'''
* '''How plants maintain variability of genes involved in pathogen recognition and to which extent this variability is caused by the interaction with pathogens?'''
* '''How the environment manipulates immune responses? How this affects the above points?'''
 
 
To address these and other questions, we (and others) developed a new model for plant immunity studies based on the use of ''Arabidopsis'' immune-related incompatible hybrids. These are hybrids obtained by crosses of natural ''Arabidopsis'' accessions that exhibit constitutive activation of defense, stunted growth and sterility in the absence of pathogen challenge. Often, such phenotypes are temperature-dependent and suppressed at high temperature.
 
 
These genetic interactions might unravel molecular partners required for proper modulation of defense. Some of these cases are background-dependent and therefore, likely difficult to be observed in classical reference accessions.
 
 
Since some years, we're using the Ler / Kas-2 immune-related hybrid incompatibility as molecular model to answer some of the questions above. The Landsberg (from Gorzów Wielkopolski, Poland)/Kashmir-2 (from Kashmir mountains) incompatibility involves populations in Central Europe and Central Asia which enable to expand our analyses to population scales. We apply population genetics on top of our molecular and biochemical analyses.  
 
 
Derived from our research, we attempt to provide new strategies for crop protection at medium to long-term.


For a more detailed view of our research, have a look at our [http://alcazar.openwetware.org/Research.html Research Projects] and [http://alcazar.openwetware.org/Publications.html Scientific Publications] sections. <br> For general public information have a look at [http://alcazar.openwetware.org/Alcazar_Youtube.html +info]. <br><br>
<font face="calibri" style="color:#DBA901" font size="4">


----
----


<font face="calibri" style="color:#ffcc66" font size="5">  
 
 
 
----
<font face="helvetica" style="color:#000000" font size="3">  
[[Image:Announcement_alcazar.jpg |100px]] '''News and Announcements e-Board'''<br>
[[Image:Announcement_alcazar.jpg |100px]] '''News and Announcements e-Board'''<br>
<font face="calibri" style="color:#000000" font size="3"><br>
<font face="calibri" style="color:#000000" font size="3"><br>
  NEWS
Master in Molecular Biotechnology (Trabajo Final de Máster) offers.
[http://www.ub.edu/portal/web/farmacia/masters-universitaris/-/ensenyament/detallEnsenyament/483691/0 info]
Contact us directly at ralcazar(at)ub.edu


  Follow Alcazar Lab press releases at EduBlogs: [[http://ralcazar.edublogs.org/ here]]  
''' ACADEMIC PRESS RELEASES'''<br>
  [http://www.ub.edu/web/ub/en/menu_eines/noticies/2015/01/020.html? Alcázar Lab work highlighted by the University of Barcelona 20.01.15]<br>
[http://www.ub.edu/noticies/cgi/event.pl?id=62490&noticiaub=FARMACIA Rubén Alcázar research highlighted by the Faculty of Pharmacy at UB, January 2015]<br>
[http://sefv.net/files/sd_publicaciones/58.pdf Alcázar Lab work highlighted by the Bulletin of the Spanish Society of Plant Physiology, SEFV. January, 2015]<br>
[http://www.mpipz.mpg.de/4042700/PM_Parker_2015 PLoS Genet 2014 highlight by Max Planck Institute, Cologne. 11.12.14.]<br>
[http://www.ub.edu/web/ub/en/menu_eines/noticies/2013/11/063.html? Arabidopsis semidwarfs: the green revolution in nature] 02.12.2013. University of Barcelona.<br>
[http://www.mpipz.mpg.de/5389/news_publication_619091 Hybrid plants with over-reactive immune system] 17.11.2010. Max Planck Society.
<br>
----
<font face="calibri" style="color:#000000" font size="2">
Rubén Alcázar is Ramón y Cajal Researcher at the Department of Biology, Healthcare and Environment of the [http://www.ub.edu University of Barcelona].<br>
----
<br>'''Research in Alcázar Lab is supported by:'''


'''The Roles of Polyamines during the lifespan of plants:from development to stress'''(2014).
<font face="calibri" style="color:#000000" font size="2"><br>
Tiburcio AF, Altabella T, Bitrián M and Alcázar R. Planta, doi: 10.1007/s00425-014-2055-9.  
* 7th Framework Programme. Marie Curie Career Integration Grant (DISEASENVIRON, PCIG10-GA-2011-303568) of the European Union.  
online first March 2014 [http://link.springer.com/article/10.1007/s00425-014-2055-9 read here]
* Ramón y Cajal Program (RYC-2011-07847) of the Ministerio de Ciencia e Innovación (Spain).
* BFU2013-41337-P grant of the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia (Ministerio de Economía y Competitividad, Spain).


'''Upcoming'''
Interested in meeting us? Our lab will participate with 2 posters at:
XII Plant Molecular Biology Meeting, Cartagena, 11-13 June 2014.
<br><br>
----
----
[http://www.ub.edu/farmacia/ The Faculty] | [http://www.ub.edu The University] | [http://bkc.upc.ub.edu/ The Campus] | [http://www.ccit.ub.edu/EN/home.html Scientific and Technological Centers]
----
<br><br>
<font face="calibri" style="color:#000000" font size="2">
Full address: Facultat de Farmacia, Universitat de Barcelona, Unitat de Fisiologia Vegetal. Avda Joan XXIII 27-31, 08028 Barcelona (Spain). <br>
Tel +34 934 024 492 Fax +34 934 029 043 <br><br>
<p>This wiki site is built under [http://www.openwetware.org Openwetware],  an open access movement promoting the sharing of information among researchers.</p>

Revision as of 01:53, 11 August 2017

**** New lab webpage hosted at University of Barcelona servers***
Please visit: http://www.ub.edu/portal/web/dp-bsma/stress



Dept. Biology, Healthcare & Environment
Section of Plant Physiology
Facultat de Farmàcia, Av. Joan XXIII 27-31
08028 Barcelona, Spain

<html><a href="http://www.revolvermaps.com/?target=enlarge&i=0ewrbw4fec7"><img src="//ra.revolvermaps.com/h/m/a/0/fff600/128/40/0ewrbw4fec7.png" width="156" height="100" alt="Map" style="border:0;"></a>


Dear visitor,

Welcome to the Molecular Genetics of Plant Stress Tolerance Lab (Ruben Alcazar & A.F. Tiburcio Labs) at the Department of Biology, Healthcare & Environment of the University of Barcelona.

We're a recently created joint research group that investigates the adaptation of plants to local environments. We focus on the evolutionary adaptation of plant populations to abiotic and biotic stresses, which are major challenges for plant survival under the current climate change predictions. Derived from our research, we investigate ways for improving stress protection.

For a more detailed view of our research, please have a look at our Research Projects and Scientific Publications sections. You can follow an updated list of our activities and publications in the NEWS section below. For any other enquires, do not hesitate to contact us directly.












1. POLYAMINE PERCEPTION AND SIGNALING


Our research laboratory has long-standing experience in the field of plant polyamines, for which we performed a number of omics approaches and established genetic evidence for their role in abiotic stress protection.


Our previous research pointed to interactions of polyamines with hormones and other stress-related metabolites. Our current goal is to investigate how polyamines are perceived by the plant, which early signaling components are involved, and how this is shaped by the environment.


We’re making use of background knowledge from different disciplines to gain insight into polyamine perception and signaling, for which little is known in plants. We’re making use of genetics of natural variation, reverse genetics, molecular biology and plant-microbe interactions to unravel how polyamines are sensed and how this relates to the local microbiota.


Our final goal is to provide novel approaches for crop protection against abiotic and biotic stresses.


Key words: stress tolerance, drought, salinity, freezing tolerance, priming, ROS, crop protection, microbiome, rhizosphere, polyamines, natural variation, transcriptional regulation, metabolon, modulon.


2. MOLECULAR EVOLUTION OF DISEASE RESISTANCE IN PLANTS


In our lab, we make use of the extensive natural variation of Arabidopsis thaliana populations to answer key fundamental questions:

  • How plants adapt to local environments including the microbiota?
  • How plants maintain variability of genes involved in pathogen recognition and to which extent this variability is caused by the interaction with pathogens?
  • How the environment manipulates immune responses? How this affects the above points?


To address these and other questions, we (and others) developed a new model for plant immunity studies based on the use of Arabidopsis immune-related incompatible hybrids. These are hybrids obtained by crosses of natural Arabidopsis accessions that exhibit constitutive activation of defense, stunted growth and sterility in the absence of pathogen challenge. Often, such phenotypes are temperature-dependent and suppressed at high temperature.


These genetic interactions might unravel molecular partners required for proper modulation of defense. Some of these cases are background-dependent and therefore, likely difficult to be observed in classical reference accessions.


Since some years, we're using the Ler / Kas-2 immune-related hybrid incompatibility as molecular model to answer some of the questions above. The Landsberg (from Gorzów Wielkopolski, Poland)/Kashmir-2 (from Kashmir mountains) incompatibility involves populations in Central Europe and Central Asia which enable to expand our analyses to population scales. We apply population genetics on top of our molecular and biochemical analyses.


Derived from our research, we attempt to provide new strategies for crop protection at medium to long-term.






News and Announcements e-Board

 NEWS
Master in Molecular Biotechnology (Trabajo Final de Máster) offers.
info
Contact us directly at ralcazar(at)ub.edu


ACADEMIC PRESS RELEASES

Alcázar Lab work highlighted by the University of Barcelona 20.01.15
Rubén Alcázar research highlighted by the Faculty of Pharmacy at UB, January 2015
Alcázar Lab work highlighted by the Bulletin of the Spanish Society of Plant Physiology, SEFV. January, 2015
PLoS Genet 2014 highlight by Max Planck Institute, Cologne. 11.12.14.
Arabidopsis semidwarfs: the green revolution in nature 02.12.2013. University of Barcelona.
Hybrid plants with over-reactive immune system 17.11.2010. Max Planck Society.



Rubén Alcázar is Ramón y Cajal Researcher at the Department of Biology, Healthcare and Environment of the University of Barcelona.



Research in Alcázar Lab is supported by:


  • 7th Framework Programme. Marie Curie Career Integration Grant (DISEASENVIRON, PCIG10-GA-2011-303568) of the European Union.
  • Ramón y Cajal Program (RYC-2011-07847) of the Ministerio de Ciencia e Innovación (Spain).
  • BFU2013-41337-P grant of the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia (Ministerio de Economía y Competitividad, Spain).