Maloof Lab: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(Removed link to naturalvariation.org)
(Added new references)
Line 40: Line 40:


<h3><font style="color:#C9D3EB;">Selected Publications</font></h3>  
<h3><font style="color:#C9D3EB;">Selected Publications</font></h3>  
* Jiménez-Gómez JM, Wallace AD, and Maloof JN. Network analysis identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis. [http://dx.plos.org/10.1371/journal.pgen.1001100 PLoS Genet 2010 Sep 9; 6(9). ]


*Brock MT, Maloof JN, and Weinig C. Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana. [http://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0962-1083&date=2010&volume=19&issue=6&spage=1187 Mol Ecol 2010 Mar; 19(6) 1187-99.]
*Kerwin, R. E., Jimenez-Gomez, J. M., Fulop, D., Harmer, S. L., Maloof, J. N. & Kliebenstein, D. J. Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in Arabidopsis. Plant Cell 23, 471-485 (2011).  [http://dx.doi.org/10.1105/tpc.110.082065]
*Nozue, K., Harmer, S. L. & Maloof, J. N. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PIF5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol  (2011).  [http://dx.doi.org/10.1104/pp.111.172684]
*Jiménez-Gómez, J. M., Wallace, A. D. & Maloof, J. N. Network analysis identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis. PLoS Genet 6,  (2010).  [http://dx.doi.org/10.1371/journal.pgen.1001100]
*Jimenez-Gomez, J. M. & Maloof, J. N. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC Plant Biol 9, 85 (2009).  [http://dx.doi.org/10.1186/1471-2229-9-85]
*Filiault, D. L., Wessinger, C. A., Dinneny, J. R., Lutes, J., Borevitz, J. O., Weigel, D., Chory, J. & Maloof, J. N. Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc Natl Acad Sci U S A 105, 3157-3162 (2008). [http://dx.doi.org/10.1073/pnas.0712174105]
 


*Jiménez-Gómez JM and Maloof JN. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. [http://www.biomedcentral.com/1471-2229/9/85 BMC Plant Biol 2009 Jul 3; 9 85.]


*Filiault DL, Wessinger CA, Dinneny JR, Lutes J, Borevitz JO, Weigel D, Chory J, and Maloof JN. Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. [http://www.pnas.org/cgi/pmidlookup?view=long&pmid=18287016 Proc Natl Acad Sci U S A 2008 Feb 26; 105(8) 3157-62.]


*Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, and Maloof JN. Rhythmic growth explained by coincidence between internal and external cues. [http://dx.doi.org/10.1038/nature05946 Nature 2007 Jul 19; 448(7151) 358-61.]
*[[Maloof_Lab:Publications | see complete list...]]
*[[Maloof_Lab:Publications | see complete list...]]



Revision as of 21:27, 9 May 2011

Room 2115
Section of Plant Biology
1002 Life Sciences, One Shields Ave.
University of California Davis
Davis, CA 95616

Contact

Home      Research      Publications      Protocols      Resources      Announcements      Lab Safety     

Research

How do organisms adapt to different environments? We are interested in understanding the genetic and molecular changes that take place as organisms adapt to different environments. Which genes change, what types of genetic changes occur, and how do these changes affect the organism at the biochemical, physiological, and ecological levels?

Since plants are rooted in their environment, they are particularly adept at coping with their environment. Furthermore different species, and populations within species, have adapted to different environments. Therefore plants are well suited for studying adaptation mechanisms.

Because light is fundamental to plant growth, we have focused on how plants sense and respond to environmental light cues. We are focused on light perception by the phytochrome photoreceptors. Phytochromes sense red and far-red light and provide information about the density of neighboring foliage (among other things).

We work on domesticated and wild tomato, Brassica rapa, Arabidopsis thaliana and related species using a combination of genomics, molecular and quantitative genetics, and molecular evolution techniques.

read more...

Lab Members

Former Members

See all former members...

Selected Publications

  • Kerwin, R. E., Jimenez-Gomez, J. M., Fulop, D., Harmer, S. L., Maloof, J. N. & Kliebenstein, D. J. Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in Arabidopsis. Plant Cell 23, 471-485 (2011). [1]
  • Nozue, K., Harmer, S. L. & Maloof, J. N. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PIF5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol (2011). [2]
  • Jiménez-Gómez, J. M., Wallace, A. D. & Maloof, J. N. Network analysis identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis. PLoS Genet 6, (2010). [3]
  • Jimenez-Gomez, J. M. & Maloof, J. N. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC Plant Biol 9, 85 (2009). [4]
  • Filiault, D. L., Wessinger, C. A., Dinneny, J. R., Lutes, J., Borevitz, J. O., Weigel, D., Chory, J. & Maloof, J. N. Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc Natl Acad Sci U S A 105, 3157-3162 (2008). [5]



Announcements

Funding

http://www4.clustrmaps.com/stats/maps-no_clusters/malooflab.openwetware.org--thumb.jpg