Peyton:Publications: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 7: Line 7:
==Journal Articles:==
==Journal Articles:==


1. '''S.R. Peyton''', Z.I. Kalcioglu, J.D. Cohen, A.P. Runkle, K.J. VanVliet, D.A. Lauffenburger, and L.G. Griffith (under review) “Stem cell motility in 3D synthetic scaffold is governed by matrix geometry along with adhesivity and stiffness.”
1. '''S.R. Peyton''', Z.I. Kalcioglu, J.D. Cohen, A.P. Runkle, K.J. VanVliet, D.A. Lauffenburger, and L.G. Griffith (in revision) “Stem cell motility in 3D synthetic scaffold is governed by matrix geometry along with adhesivity and stiffness.”


2. C.M. Williams, G. Mehta, '''S.R. Peyton''', A.S. Zeiger, K.J. VanVliet, and L.G. Griffith (in preparation) “Micropatterned semi-synthetic hydrogel arrays create a 3D niche for autocrine-induced tissue formation.”
2. C.M. Williams, G. Mehta, '''S.R. Peyton''', A.S. Zeiger, K.J. VanVliet, and L.G. Griffith (in preparation) “Micropatterned semi-synthetic hydrogel arrays create a 3D niche for autocrine-induced tissue formation.”

Revision as of 20:27, 22 February 2010

Home                                                                                      Internal   


Journal Articles:

1. S.R. Peyton, Z.I. Kalcioglu, J.D. Cohen, A.P. Runkle, K.J. VanVliet, D.A. Lauffenburger, and L.G. Griffith (in revision) “Stem cell motility in 3D synthetic scaffold is governed by matrix geometry along with adhesivity and stiffness.”

2. C.M. Williams, G. Mehta, S.R. Peyton, A.S. Zeiger, K.J. VanVliet, and L.G. Griffith (in preparation) “Micropatterned semi-synthetic hydrogel arrays create a 3D niche for autocrine-induced tissue formation.”

3. P.D. Kim, S.R. Peyton, A.J. VanStrien, and A.J. Putnam (2009) “The influence of ascorbic acid, TGF-β1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs.” Biomaterials. Aug;30(23-24):3854-64

4. C.B. Khatiwala, P.D. Kim, S.R. Peyton, and A.J. Putnam (2009) “ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK.” Journal of Bone and Mineral Research. May;24(5):886-98.

5. S.R. Peyton, P.D. Kim, C.M. Ghajar, D. Seliktar, and A.J. Putnam (2008) “The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system.” Biomaterials. Jun:29(17):2597-607.

6. C.B. Khatiwala, S.R. Peyton, and A.J. Putnam. (2007) “The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation.” Journal of Cellular Physiology. 211: 661-672.

7. S.R. Peyton, C.M. Ghajar, C.B. Khatiwala, and A.J. Putnam. (2007) “The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function.” Cell Biochemistry and Biophysics. Apr;47(2):300–320.

8. C.M. Ghajar, V. Suresh, S.R. Peyton, C.B. Raub, F.L. Meyskens Jr., S.C. George, and A.J. Putnam. (2007) “A novel 3-D model to quantify metastatic melanoma invasion.” Molecular Cancer Therapeutics. Feb;6(2):552-561.

9. S.R. Peyton, C.B. Raub, V.P. Keschrumrus, and A.J. Putnam. (2006) “The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells.” Biomaterials. Oct;27(28):4881-93.

10. C. Khatiwala, S.R. Peyton, and A.J. Putnam. (2006) “The effects of the intrinsic mechanical properties of the extracellular matrix on the behavior of pre-osteoblastic MC3T3-E1 cells.” AJP-Cell Physiology. 290(6):C1640-50.

11. S.R. Peyton and A.J. Putnam. (2005) “Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion.” Journal of Cellular Physiology. 204(1):198-209.