Physics307L:People/Phillips/Photoelectric

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Data & Results)
(Data & Results)
Line 10: Line 10:
<math>h^{1}_{first order} = (6.911 \pm .087) \times 10^{-34}~\mathrm{J}\cdot\mathrm{s} = (4.319 \pm .054) \times 10^{-15}~\mathrm{eV}\cdot\mathrm{s}</math>
<math>h^{1}_{first order} = (6.911 \pm .087) \times 10^{-34}~\mathrm{J}\cdot\mathrm{s} = (4.319 \pm .054) \times 10^{-15}~\mathrm{eV}\cdot\mathrm{s}</math>
 +
 +
<math>h^{2}_{first order} = (6.978 \pm .059) \times 10^{-34}~\mathrm{J}\cdot\mathrm{s} = (4.361 \pm .037) \times 10^{-15}~\mathrm{eV}\cdot\mathrm{s}</math>
 +
 +
each with percent errors from the accepted value of
 +
 +
<math>\% error^{1}_{first order} = 4.30\%</math>
 +
 +
<math>\% error^{2}_{first order} = 5.32\%</math>
 +
 +
 +
Along with these first order values, we also ran through the experiment using only the second order maxima, obtaining different values for Planck's constant:

Revision as of 20:29, 6 December 2008

Photoelectric Effect (Planck's Constant) Summary

Data & Results

The notebook entry for this lab is located here. We generated two Excel files for this lab as well: Planck.xlsx and First Order.xlsx.

We measured two different things in this lab related to the photoelectric effect, but only one of these has an accepted value - Planck's Constant. This value is

h_{acc} = 6.626\,068\,96(33) \times 10^{-34}~\mathrm{J}\cdot\mathrm{s} = 4.135\,667\,33(10) \times 10^{-15}~\mathrm{eV}\cdot\mathrm{s}

We came up with many different value for Planck's constant. We obtained two from the first order maxima from the light source, each being a separate run through the colors:

h^{1}_{first order} = (6.911 \pm .087) \times 10^{-34}~\mathrm{J}\cdot\mathrm{s} = (4.319 \pm .054) \times 10^{-15}~\mathrm{eV}\cdot\mathrm{s}

h^{2}_{first order} = (6.978 \pm .059) \times 10^{-34}~\mathrm{J}\cdot\mathrm{s} = (4.361 \pm .037) \times 10^{-15}~\mathrm{eV}\cdot\mathrm{s}

each with percent errors from the accepted value of

\% error^{1}_{first order} = 4.30\%

\% error^{2}_{first order} = 5.32\%


Along with these first order values, we also ran through the experiment using only the second order maxima, obtaining different values for Planck's constant:

Personal tools