Rabinow lab

From OpenWetWare

Revision as of 20:58, 2 March 2007 by Anthonystavrianakis (Talk | contribs)
Jump to: navigation, search

Contents

FUNDAMENTAL HUMAN PRACTICES

Goals

We see developments in synthetic biology as an opportunity to invent new forms of collaborative practice. Standard approaches have sought to anticipate how new scientific developments will impact “society,” positioning themselves external to, and “downstream” of, the scientific work per se. This positioning, for example, was mandated by the Human Genome Initiative and the so-called ELSI project (ethical, legal, and social implications). By contrast, we are committed to an approach that fosters a co-production among disciplines and perspectives from the outset. The value of collaboration is that its goal is to build a synergistic and recursive structure within which significant challenges, problems, and achievements are more likely to be clearly formulated and successfully evaluated. Synthetic biology already represents a highly innovative assemblage of multiple scientific sub-disciplines, diverse forms of funding, complex institutional collaborations, serious forward-looking reflection, intensive work with governmental and non-governmental agencies, focused legal innovation, imaginative use of media, and the like. We begin with the assumption that from the outset, Thrust IV must be an integral, if distinctive, part of this overall effort. It is a principle goal of Thrust IV to invent and sustain this form of collaboration.

Thrust IV takes as its goal the articulation of a different model. If the scientific aims of synthetic biology can be summarized as the effort to make living things better and to make better living things, then the principle question that orients the four modules of Thrust IV is: How should complex assemblages bringing together a broad range of diverse actors be ordered so as to make it more rather than less likely that their near-future goals will be realized? This question and the challenge it poses to standard arrangements involves a number of key principles; Uncertainty, Adaptation and Recursivity

Thrust 4 Statement: Media:Thrust_4_alpha.doc‎

Ethics

Rethink the relationship of ethics and science in view of the highly innovative assemblage of objectives and practices in synthetic biology; analysis of the limitations and advantages of recent bio-ethics projects, including Belmont, Asilomar, ELSI, and Presidential Commissions; empirical research on evolving ethical practices in synthetic biology (including IP and security), monitoring differences in context and practical experience; design and develop collaborative ethical practices that reconfigure science and ethics for synthetic biology; stabilization and transfer of these collaborative practices.


Berkeley Human Practices Lab: Media:Ethics_Module_Paragraphs.doc

Ontology

Reflect on the form and essence of the parts, devices, chassis, and systems being created by synthetic biology; analyze the differences between the objects created in older recombinant technologies and those projected in synthetic biology; empirical research tracking how these parts, devices, chassis, systems, and test beds are designed and the ways that evolution and contemporary synthetic approaches differ from and enforce each other; observe and design new institutional arrangements and interventions appropriate to the new objects being brought into the world; stabilization and transfer of new modes of productively assembling scientific, technological, economic, cultural, ethical, and security components.

Berkeley Human Practices Lab: Media:Ontology_Module_Paragraphs.doc

DOMAINS

Security

Health

Energy

Environment

GLOSSARY

COURSES

BIBLIOGRAPHY

WORK SCHEDULE

November
SMTWTFS
1
2345678
9101112131415
16171819202122
23242526272829
30
December
SMTWTFS
123456
78910111213
14151617181920
21222324252627
28293031
January
SMTWTFS
123
45678910
11121314151617
18192021222324
25262728293031
Personal tools