Ryan:Notebook/Chlorite Dismutase

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Autocreated Lab Notebook name=Ryan:Notebook/Chlorite Dismutase, content from MediaWiki:ProjectContentDefault)
(Project Description/Abstract)
Line 14: Line 14:
|colspan="2"|
|colspan="2"|
==Project Description/Abstract==
==Project Description/Abstract==
-
* Place short description of project or notes regarding this project
+
* Our objective is to demonstrate proof-of-concept for a novel bioprocess hygiene strategy. Industrial fermentation facilities are vulnerable to contamination with unwanted eukaryotes, bacteria, and bacteriophage. Growth of contaminating organisms can reduce product yields or lead to bioreactor collapse, entailing financial losses. In Saccharomyces cerevisiae-based fuel ethanol fermentations, lactic acid bacteria and wild yeasts are common contaminants (5, 41). Some facilities use antibiotics to treat or prevent bacterial infections in fuel bioreactors, but antibiotics are not universally effective against bacteria, and they do not preventcontamination by wild yeasts. In the case of bacterial fermentations, antibiotics could be used to selectively inhibit or spare certain species, but they do not protect process organisms from bacteriophage infection.
-
* Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec porta commodo tellus. Nam a est eget libero mollis tincidunt. Aliquam purus. Quisque nulla ligula, facilisis in, pulvinar sed, molestie a, quam. Vestibulum at pede. In in sem eget odio eleifend placerat. Phasellus ultricies felis quis sapien. Etiam molestie volutpat quam. Praesent pulvinar scelerisque mi. Nam mi urna, fringilla eu, mattis sed, venenatis id, nunc. Maecenas velit eros, congue ut, placerat in, ornare vel, sem. Aenean porta enim sit amet felis gravida posuere. Phasellus faucibus nibh et orci.
+
* We propose a strategy in which process organisms are engineered to produce the enzyme chlorite dismutase (Cld), which detoxifies the disinfectant compound chlorite by converting it to chloride and molecular oxygen (43). Chlorite added to the fermentation system would then selectively damage non-Cld-expressing contaminants, including eukaryotes, bacteria, and bacteriophage.
 +
 
 +
* In this study, we will accomplish two steps toward this goal. First, we will demonstrate
 +
that a Cld-expressing bacterium is protected from phage-mediated lysis by the addition of chlorite. Second, we will demonstrate that Cld expressed in S. cerevisiae will protect this organism from concentrations of chlorite that kill or inhibit the growth of known contaminants of fuel ethanol fermentations. These studies will pave the way for the development of a widely applicable technique to address fermentation hygiene  concerns in a variety of industrial fermentations.
==Notes==
==Notes==

Revision as of 16:02, 7 May 2014

Search this Project

Customize your entry pages

Project Description/Abstract

  • Our objective is to demonstrate proof-of-concept for a novel bioprocess hygiene strategy. Industrial fermentation facilities are vulnerable to contamination with unwanted eukaryotes, bacteria, and bacteriophage. Growth of contaminating organisms can reduce product yields or lead to bioreactor collapse, entailing financial losses. In Saccharomyces cerevisiae-based fuel ethanol fermentations, lactic acid bacteria and wild yeasts are common contaminants (5, 41). Some facilities use antibiotics to treat or prevent bacterial infections in fuel bioreactors, but antibiotics are not universally effective against bacteria, and they do not preventcontamination by wild yeasts. In the case of bacterial fermentations, antibiotics could be used to selectively inhibit or spare certain species, but they do not protect process organisms from bacteriophage infection.
  • We propose a strategy in which process organisms are engineered to produce the enzyme chlorite dismutase (Cld), which detoxifies the disinfectant compound chlorite by converting it to chloride and molecular oxygen (43). Chlorite added to the fermentation system would then selectively damage non-Cld-expressing contaminants, including eukaryotes, bacteria, and bacteriophage.
  • In this study, we will accomplish two steps toward this goal. First, we will demonstrate

that a Cld-expressing bacterium is protected from phage-mediated lysis by the addition of chlorite. Second, we will demonstrate that Cld expressed in S. cerevisiae will protect this organism from concentrations of chlorite that kill or inhibit the growth of known contaminants of fuel ethanol fermentations. These studies will pave the way for the development of a widely applicable technique to address fermentation hygiene concerns in a variety of industrial fermentations.

Notes

  • Place some notes here for visitors
  • Example: This project is currently on hold until further notice.


Recent changes



Personal tools