Sobeck Lab

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Postdoc Wanted!)
Line 15: Line 15:
Summer is here :)  [[image:Frog10.gif]]
Summer is here :)  [[image:Frog10.gif]]
-
==Postdoc Wanted!==
+
==<font color="red"> POSTDOC WANTED! </font>==
Line 25: Line 25:
The start date is negotiable but ideal start will be Fall 2009.
The start date is negotiable but ideal start will be Fall 2009.
Interested? Please send a short statement of your research interests, complete curriculum vitae, and the names and contact information of at least two references by e-mail to asobeck@umn.edu with "Postdoc Position Sobeck Lab" as subject line.
Interested? Please send a short statement of your research interests, complete curriculum vitae, and the names and contact information of at least two references by e-mail to asobeck@umn.edu with "Postdoc Position Sobeck Lab" as subject line.
-
 
==Research Description==
==Research Description==

Revision as of 19:21, 7 July 2009

Home/Research        Contact        Lab Members        Publications        Talks        Protocols        Internal       



Contents

Lab News

Our PCR's are fail-proof :)


Summer is here :) image:Frog10.gif

POSTDOC WANTED!

We are currently inviting applications for a Postdoctoral Associate Position to investigate mechanisms of genomic instability and cancer susceptibility.

Our lab is part of the Masonic Comprehensive Cancer Center and focuses on elucidating functions of Fanconi Anemia (FA) and Breast Cancer Associated Proteins in the context of cellular caretaker networks. We utilize biochemical assays in Xenopus laevis cell-free egg extracts and human cell systems to identify novel pathway players and functionally and structurally characterize Fanconi Anemia/BRCA proteins.

We seek enthusiastic candidates that have a solid background in Molecular Biology/ Biochemistry and enjoy being part of a highly motivated research team. A specific interest and expertise in DNA repair and replication would be ideal. Our research team works in an open lab structure that nurtures interactions with neighboring laboratories studying fundamental questions in cancer research and the DNA damage response. The start date is negotiable but ideal start will be Fall 2009. Interested? Please send a short statement of your research interests, complete curriculum vitae, and the names and contact information of at least two references by e-mail to asobeck@umn.edu with "Postdoc Position Sobeck Lab" as subject line.

Research Description

FA Pathway Model
FA Pathway Model

The stability of the cellular genome is constantly threatened by a variety of exogenous and endogenous mutagenic agents such as UV light, reactive oxygen species, etc. Cells protect their genome against carcinogenic alterations by using a complex network of “caretaker” proteins that function to maintain the integrity of the cellular chromosomes. Inherited defects in these caretaker genes are the cause of genomic instability syndromes in humans, such as Fanconi Anemia or Bloom syndrome, characterized by a highly elevated risk to develop certain types of cancer. We study these diseases to understand and discover novel mechanisms important to control and suppress cancer susceptibility.

Our lab is particularly interested in the evolutionarily new Fanconi anemia (FA) caretaker pathway. According to the current FA pathway model (see cartoon), a large nuclear complex of at least 10 FA proteins is required to activate two downstream target proteins, FANCD2 and FANCI. This activation occurs in response to DNA damage but also during every S-phase of the cell cycle, when cells replicate their chromosomes. Thus, the FA pathway is suspected to have important functions to prevent DNA damage that occurs naturally during every round of chromosomal replication.

To identify the roles of FA proteins in the DNA damage response, we use egg extracts from the African clawed frog Xenopus laevis – an extremely powerful cell free system that uniquely mirrors cellular replication of DNA complete with the assembly of chromatin into a functional nucleus.

The lab uses a combination of biochemistry, genetics, and imaging techniques to elucidate molecular mechanisms that underlie the FA caretaker functions, and to understand how FA proteins are networked with other caretaker proteins including the breast cancer-associated proteins (e.g. BRCA1 and BRCA2) and the Bloom syndrome-associated proteins (e.g. BLM and BLAP75).


Useful links

Personal tools