Subsoontorn Lab:Research: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 10: Line 10:
<font size = "2">
<font size = "2">
Our ability to study and utilise microbiota is limited by the lack of tools for precisely perturbing and modulating microbial subpopulations of interest within a heterogenous population. Recently, CRISPR/Cas technology was used for creating antimicrobials with a programmable spectrum of activities.This strategy exploits the fact that CRISPR/Cas system can be designed to break a specific DNA sequence. In a prokaryotic cell without efficient DNA repair, such genomic cleavage often results in cell death. By delivering the designed CRISPR/Cas system to a microbial population one could selectively knockdown a subpopulation whose genomic DNA is targeted. Previous works demonstrated sequence-specific elimination of Escherichia coli and Staphylococcus aureus in mixed populations. Here, we are applying this strategy for targeted elimination of Vibrio harveyi, a pathogenic bacteria in black tiger shrimp and Pacific white shrimp. This project is under collaboration with Dr. Wanilada Rungrassamee (BIOTEC) and Prof. Dr. Jim Haseloff (University of Cambridge, UK)  
Our ability to study and utilise microbiota is limited by the lack of tools for precisely perturbing and modulating microbial subpopulations of interest within a heterogenous population. Recently, CRISPR/Cas technology was used for creating antimicrobials with a programmable spectrum of activities.This strategy exploits the fact that CRISPR/Cas system can be designed to break a specific DNA sequence. In a prokaryotic cell without efficient DNA repair, such genomic cleavage often results in cell death. By delivering the designed CRISPR/Cas system to a microbial population one could selectively knockdown a subpopulation whose genomic DNA is targeted. Previous works demonstrated sequence-specific elimination of Escherichia coli and Staphylococcus aureus in mixed populations. Here, we are applying this strategy for targeted elimination of Vibrio harveyi, a pathogenic bacteria in black tiger shrimp and Pacific white shrimp. This project is under collaboration with Dr. Wanilada Rungrassamee (BIOTEC) and Prof. Dr. Jim Haseloff (University of Cambridge, UK)  
http://www.stanforddaily.com/2017/02/02/stanford-students-explore-bio-innovation-with-biome/ Stanford Daily]
http://www.stanforddaily.com/2017/02/02/stanford-students-explore-bio-innovation-with-biome/ | Stanford Daily]
</font >
</font >



Revision as of 20:42, 9 May 2017

Current Research

Precision engineering of marine microbiome

Our ability to study and utilise microbiota is limited by the lack of tools for precisely perturbing and modulating microbial subpopulations of interest within a heterogenous population. Recently, CRISPR/Cas technology was used for creating antimicrobials with a programmable spectrum of activities.This strategy exploits the fact that CRISPR/Cas system can be designed to break a specific DNA sequence. In a prokaryotic cell without efficient DNA repair, such genomic cleavage often results in cell death. By delivering the designed CRISPR/Cas system to a microbial population one could selectively knockdown a subpopulation whose genomic DNA is targeted. Previous works demonstrated sequence-specific elimination of Escherichia coli and Staphylococcus aureus in mixed populations. Here, we are applying this strategy for targeted elimination of Vibrio harveyi, a pathogenic bacteria in black tiger shrimp and Pacific white shrimp. This project is under collaboration with Dr. Wanilada Rungrassamee (BIOTEC) and Prof. Dr. Jim Haseloff (University of Cambridge, UK) http://www.stanforddaily.com/2017/02/02/stanford-students-explore-bio-innovation-with-biome/ | Stanford Daily]


Past Research

Latest news and events

May 2017 Our first set of reagents and equipments have arrived.
April 2017 Three students joined the lab.
February 2017 We got TRF grant for New Researcher

... See more

Home