Talk:CH391L/S12/CounterSelection: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 2: Line 2:


*'''[[User:Ben Slater|Ben Slater]] 02:09, 25 February 2012 (EST)''': Does allelic exchange work in eukaryotes? It seems like it would be awesome for applications like gene therapy, if it allows chromosomal editing at any given site. Another question: how would one synthesize the homologous insert? Thanks!
*'''[[User:Ben Slater|Ben Slater]] 02:09, 25 February 2012 (EST)''': Does allelic exchange work in eukaryotes? It seems like it would be awesome for applications like gene therapy, if it allows chromosomal editing at any given site. Another question: how would one synthesize the homologous insert? Thanks!
**'''[[User:Jeffrey E. Barrick|Jeffrey E. Barrick]] 19:08, 26 February 2012 (EST)''':Here's an attempt at an answer. I'm no expert in this area. You can "transiently transfect" eukaryotic (mammalian) cells in culture by using viruses as vectors. This results in your gene being made, but isn't very stable -- it's like putting an unstable plasmid into a bacterium. You can also generate animals, like mice that have a gene knocked out. I'm not familiar with the exact methods, but it undoubtedly involves using selectable markers. In multicellular eukaryotes, a lot of the difficulty is also in getting the mutation in the germ line, or at least into cells that continue to divide during an organism's lifetime.

Revision as of 17:08, 26 February 2012


  • Ben Slater 02:09, 25 February 2012 (EST): Does allelic exchange work in eukaryotes? It seems like it would be awesome for applications like gene therapy, if it allows chromosomal editing at any given site. Another question: how would one synthesize the homologous insert? Thanks!
    • Jeffrey E. Barrick 19:08, 26 February 2012 (EST):Here's an attempt at an answer. I'm no expert in this area. You can "transiently transfect" eukaryotic (mammalian) cells in culture by using viruses as vectors. This results in your gene being made, but isn't very stable -- it's like putting an unstable plasmid into a bacterium. You can also generate animals, like mice that have a gene knocked out. I'm not familiar with the exact methods, but it undoubtedly involves using selectable markers. In multicellular eukaryotes, a lot of the difficulty is also in getting the mutation in the germ line, or at least into cells that continue to divide during an organism's lifetime.