Todd:Chem3x11 ToddL1

From OpenWetWare
Revision as of 06:22, 30 March 2012 by Matthew Todd (talk | contribs) (→‎Kinds of Isomerism: sterecentre figure)
Jump to navigationJump to search

Home        Contact        Internal        People        Papers        Research        Teaching        Links        News        Construction       


Chem3x11 Lecture 1

This lecture is an overview of isomerism, then some material on stereocentres and what chiral molecules look like in 1H NMR spectroscopy.

Key concepts

  • There are two different kinds of stereoisomers
  • Conformations of alkanes governed by sterics and electronics
  • Prochiral centres become interesting in a chiral environment

Kinds of Isomerism

Constitutional isomers are the easiest to think about. The molecules are put together differently. Interview each atom in Molecule A in turn by asking "What other atoms are you bonded to?", then do the same for each atom in Molecule B. If the answers you get are different, Molecules A and B are constitutional isomers.

Scheme 1: Different connectivity: A simple example of constitutional isomers

Atoms in stereoisomers would give you the same answer since the atoms are connected to each other the same way, only the positions of the atoms in space changes. The easiest kind of stereoisomers to conceptualize are those around a double bond, i.e. E- and Z- isomers. To interconvert these you'd need to break the double bond, and when a bond needs to be broken we call that configurational isomerism.

Scheme 2: Same connectivity: A simple example of configurational isomers

Stereocentres are like that too, so enantiomers are configurational isomers.

Scheme 3: Same connectivity: Another simple example of configurational isomers

Stereoisomers you can interconvert without breaking any bonds are both interesting and not. The example below concerns alkanes, which seems silly because we never isolate the alkane isomers under normal conditions - the bond rotation is too easy/fast. But there are some very interesting and important examples of this kind of isomerism, particularly in Nature. Isomers of this kind, where all the atoms are connected to each other the same way, but there is a difference in the 3D arrangement of atoms BUT the isomers can be interconverted without breaking any bonds are called conformational isomers.

Scheme 4: Isomer Summary. Yes, all the terms begin with C