Todd:Chem3x11 ToddL4

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(started)
(Initial text)
Line 12: Line 12:
* 3
* 3
-
==Section 1==
+
==Why do we Study Reaction Mechanisms?==
-
===Subsection 1===
+
A reaction mechanism is the detail of how/why one molecule becomes another. Why do we care? Three reasons:
-
Text
+
1) '''Truth''' - even if a reaction is well-behaved, we're human being and like to understand the universe.
-
[[Image:Cis trans 12dimethylcyclohex.png|thumb|center|500px| '''Scheme 1:''' ''cis'' and ''trans'' Diastereomers of 1,2-Dimethylcyclohexane]]
+
[[Image:Cis trans 12dimethylcyclohex.png|thumb|center|300px| '''Scheme 1:''' A Well-behaved Organic Reaction]]
 +
 
 +
2) '''Complexity''' - in many cases reactions do unexpected things. Reactions never "don't work" - they either give back unreacted starting material, give the expected product, give something else, or give mixtures of things. Frequently we want to understand reaction mechanisms so we can understand complex reaction outcomes - the "Why did that happen?" question.
 +
 
 +
[[Image:Cis trans 12dimethylcyclohex.png|thumb|center|300px| '''Scheme 2:''' A Reaction Giving Multiple Products]]
 +
 
 +
3) '''Prediction''' - if we understand reaction mechanisms we can start to make intelligent predictions about how to make new reactions work.
 +
 
 +
[[Image:Cis trans 12dimethylcyclohex.png|thumb|center|300px| '''Scheme 3:''' A New Reaction for which we need to Predict Reagents and Conditions]]
 +
 
 +
Stereochemistry is useful in the study of reaction mechanisms. If we compare the stereochemistry of starting materials with the stereochemistry in the products, we can deduce things that must have happened in a reaction mechanism even if we can't see those things directly. This forms one very useful part of the study of mechanisms (when coupled with things like spectroscopy and kinetics).
 +
 
 +
In this lecture we'll talk about the standard polar organic reactions that you've seen already.
 +
 
 +
[[Image:Cis trans 12dimethylcyclohex.png|thumb|center|300px| '''Scheme 4:''' Polar Organic Reactions]]
 +
 
 +
The first thing to say, by way of introduction, is that we need to remember that reactions don't just happen as if by magic between the two ions. The nucleophile and electrophile have molecular orbitals on them that need to align for a reaction to occur. In the case of polar reactions an electron pair in a filled molecular orbital on the nucleophile needs to overlap with an empty molecular orbital on the electrophile. Good overlap (giving a strong bond) requires these orbitals be close in energy.
 +
 
 +
[[Image:Cis trans 12dimethylcyclohex.png|thumb|center|300px| '''Scheme 4:''' Polar Organic Reactions]]

Revision as of 00:57, 28 April 2012

Home        Contact        Internal        People        Papers        Research        Teaching        Links        News        Construction       


Contents

Chem3x11 Lecture 4

Under construction Sat Apr 28.

(Back to the main teaching page)

Key concepts

  • 1
  • 2
  • 3

Why do we Study Reaction Mechanisms?

A reaction mechanism is the detail of how/why one molecule becomes another. Why do we care? Three reasons:

1) Truth - even if a reaction is well-behaved, we're human being and like to understand the universe.

Scheme 1: A Well-behaved Organic Reaction
Scheme 1: A Well-behaved Organic Reaction

2) Complexity - in many cases reactions do unexpected things. Reactions never "don't work" - they either give back unreacted starting material, give the expected product, give something else, or give mixtures of things. Frequently we want to understand reaction mechanisms so we can understand complex reaction outcomes - the "Why did that happen?" question.

Scheme 2: A Reaction Giving Multiple Products
Scheme 2: A Reaction Giving Multiple Products

3) Prediction - if we understand reaction mechanisms we can start to make intelligent predictions about how to make new reactions work.

Scheme 3: A New Reaction for which we need to Predict Reagents and Conditions
Scheme 3: A New Reaction for which we need to Predict Reagents and Conditions

Stereochemistry is useful in the study of reaction mechanisms. If we compare the stereochemistry of starting materials with the stereochemistry in the products, we can deduce things that must have happened in a reaction mechanism even if we can't see those things directly. This forms one very useful part of the study of mechanisms (when coupled with things like spectroscopy and kinetics).

In this lecture we'll talk about the standard polar organic reactions that you've seen already.

Scheme 4: Polar Organic Reactions
Scheme 4: Polar Organic Reactions

The first thing to say, by way of introduction, is that we need to remember that reactions don't just happen as if by magic between the two ions. The nucleophile and electrophile have molecular orbitals on them that need to align for a reaction to occur. In the case of polar reactions an electron pair in a filled molecular orbital on the nucleophile needs to overlap with an empty molecular orbital on the electrophile. Good overlap (giving a strong bond) requires these orbitals be close in energy.

Scheme 4: Polar Organic Reactions
Scheme 4: Polar Organic Reactions


The Licence for This Page

Is CC-BY-3.0 meaning you can use whatever you want, provided you cite me.

Personal tools