UA Biophysics:Membrane Biophysics: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 38: Line 38:
==Current projects==
==Current projects==


&bull; Nanomechanical properties of supported lipid bilayers in presence of the antimicrobial peptide Magainin-H2 using AFM - PhD student: '''[[User:Nathaly Marin-Medina|Nathaly Marín-Medina]]'''<br>
&bull; Nanomechanical properties of supported lipid bilayers in presence of the antimicrobial peptide Magainin-H2 using AFM<br>
&bull; Nanomechanical properties of lipid vesicles using membrane fluctuation analysis - Master student: '''[[User:Rudy Marcela Méndez|Rudy Marcela Méndez]]'''
:PhD student: '''[[User:Nathaly Marin-Medina|Nathaly Marín-Medina]]'''<br>
&bull; Nanomechanical properties of lipid vesicles using membrane fluctuation analysis<br>
:Master student: '''[[User:Rudy Marcela Méndez|Rudy Marcela Méndez]]'''


<h3>Ancient projects</h3>
<h3>Ancient projects</h3>

Revision as of 09:01, 15 July 2015

MEMBRANE BIOPHYSICS

PIs and Summary

PI: Manu Forero-Shelton (2014-currently)
Former PI: Chad Leidy (2005-2015)

We have developed a multi-approach strategy involving spectroscopy and microscopy techniques to explore how the physical properties of cell membranes influence a variety of physiological mechanisms that range from cell signaling to membrane mechanical properties.

Techniques and equipments

• Fluorescence spectroscopy - ISS PC1 Spectrofluorometer
• Fluorescence microscopy - Zeiss Axiovert 40 CFL, Nikon
• Atomic force microscopy - MFP-3D-BIO AFM Asylum Research

Current projects

• Nanomechanical properties of supported lipid bilayers in presence of the antimicrobial peptide Magainin-H2 using AFM

PhD student: Nathaly Marín-Medina

• Nanomechanical properties of lipid vesicles using membrane fluctuation analysis

Master student: Rudy Marcela Méndez

Ancient projects

• Influence of lipid domain formation and membrane structure on PLA2 activity. This hydrolytic enzyme is highly sensitive to the physical properties of the bilayer membrane. We explore how the modulation of membrane lateral organization can act as a regulator of the enzyme.

• Physical properties of bacterial membranes and their influence on the susceptibility of bacterial populations towards antibacterial agents.

• Modeling the motion of giant uniilamellar vesicles interacting with surfaces (an experimental and computational project in collaboration with Dr. Andres Gonzalez in Mechanical Engineering)

• Modulating membrane fusion through the activity of hydrolytic enzymes and membrane active peptides.

• Modeling the effects of rhodopsin organization in regulating the dynamics of single photon response.

Documents

• Propiedades mecánicas de membranas como factor de resistencia a péptidos antimicrobianos (Lipid membrane mechanical properties as a resistance factor to antimicrobial peptide resistance) - Master thesis 2014
Student: Paula Santisteban, Advisor: Chad Leidy

Adaptation of the level of lipid chain order and elastic properties of bacterial membranes as a mechanism for inducing resistance to amphiphilic antimicrobial peptides - Master thesis 2012
Student: Diego Alejandro Ramírez, Advisor: Chad Leidy

• Regulación de la actividad enzimática por comportamiento crítico de la coexistencia de fases en membranas modelo (Regulation of enzimatic activity in lipid phase coexistance in model membranes) - Undergraduate thesis 2009
Student: Carlos Domínguez Paz, Advisor: Chad Leidy

• Evaluación de la actividad de fosfolipasa A2 en el diafragma de fase de POPC-Esfingomielina-Colesterol (Characterization of phospholipase A2 activity in the POPC:SM:Cho phase diagram) - Master thesis 2007
Student: Carola Hernández, Advisor: Chad Leidy

• Estudio de las propiedades termodinámicas de membranas bacteriales de Escherichia coli y Staphylococcus aureus por medio de espectroscopía de infrarrojo bajo la acción de Fosfolipasa A2, tipo IIA (Study of the thermodynamic properties of bacterial (E.coli and S.aureus) membranes via infrared spectroscopy in presence of Phospholipase A2, type IIA) - Undergraduate thesis 2006
Student: Jackson Ocampo, Advisor: Chad Leidy