User:Austin G. Meyer: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(28 intermediate revisions by the same user not shown)
Line 1: Line 1:
<!-- Delete this entire line as part of your first edit of your user page --> {{New user}}
==Contact Info==
==Contact Info==
[[Image:OWWEmblem.png|thumb|right|Austin G. Meyer (an artistic interpretation)]]
[[Image:Primary.png|thumb|right|Austin G. Meyer (In Taos, NM)]]


*Austin G. Meyer
*Austin G. Meyer
*University of Texas at Austin
*University of Texas at Austin
*[[Special:Emailuser/Austin G. Meyer|Email]]
*[[Special:Emailuser/Austin G. Meyer|Email through OpenWetWare]]
*[http://www.meyerresearch.com/tiki-index.php?page=Contact+Information Full Information]
 
==Summary==
I am currently in Lubbock, TX attending medical school at Texas Tech University Health Sciences Center.  I will be returning to the lab full time in the summer of 2014 to complete my final year at UT.
 
I am member of the lab of Dr. [http://wilke.openwetware.org/ Claus Wilke] at the University of Texas at Austin.


I am a joint member in the labs of Drs. Claus Wilke and Jeff Barrick at the University of Texas at Austin.
Visit my research website [http://www.meyerlab.org here].


Visit my research website here: [http://www.meyerresearch.com].
My personal website is generally kept more up to date and in depth on my work.


==Education==
==Education==
<!--Include info about your educational background-->
<!--Include info about your educational background-->
* 2010-Present, PhD Biochemistry, University of Texas at Austin
* ''In Progress (2017)'', MD, Texas Tech University Health Sciences Center
* ''In Progress (2014)'', PhD Biochemistry, University of Texas at Austin
* 2010, MS Structural Biology, Texas Tech University Health Sciences Center
* 2010, MS Structural Biology, Texas Tech University Health Sciences Center
* 2008, BS Physics, Texas Tech University
* 2008, BS Physics, Texas Tech University
Line 22: Line 27:
<!-- Feel free to add brief descriptions to your research interests as well -->
<!-- Feel free to add brief descriptions to your research interests as well -->
# Quantitative Biology - In particular modeling biological phenomena and making predictions from simulations.
# Quantitative Biology - In particular modeling biological phenomena and making predictions from simulations.
# Structural Biology and Biophysics
# Bio-medical Data Science - At the intersection of traditional fields like biology, medicine, statistics, and computer science.  I think this will be the next revolution in science and technology.  We are already seeing steps in this direction with important data troves coming from the Affordable Care Act's electronic health record mandates and the 1000 genomes project.
# Experimental Molecular Biology and Molecular Evolution - Exploiting natural processes to technological ends.
# Experimental Molecular Biology and Molecular Evolution - Exploiting natural processes to technological ends.
# Structural Biology and Biophysics


==Publications==
==Publications==
<!-- Replace the PubMed ID's ("pmid=#######") below with the PubMed ID's for your publications. You can add or remove lines as needed -->
'''2014'''
<biblio>
# V. Sridhara, A. G. Meyer, J. E. Barrick, P. Ravikumar, D. Segre, and C. O. Wilke (submitted to Molecular BioSystems). Predicting bacterial growth conditions from metabolic output by flux balance analysis. [http://biorxiv.org/content/early/2014/01/31/002287 biorxiv.org/content/early/2014/01/31/002287]
#Paper1 pmid=6947258
# A. G. Meyer, S. L. Sawyer, A. D. Ellington, and C. O. Wike (2014). Analyzing Machupo virus-receptor binding by molecular dynamics simulations. PeerJ, 2:e266. [http://dx.doi.org/10.7717/peerj.266 doi:10.7717/peerj.266]
#Paper2 pmid=13718526
# K. Fuson, A. Rice, R. Mahling, A. Snow, K. Nayak, P. Shanbhogue, A. G. Meyer, G. Redpath, A. Hinderliter, S. T. Cooper and R. B. Sutton (2014). Alternate splicing of dysferlin C2A confers Ca2+-dependent and Ca2+-independent binding for membrane repair. Structure. [http://dx.doi.org/10.1016/j.str.2013.10.001 doi:10.1016/j.str.2013.10.001]
// leave a comment about a paper here
 
#Book1 isbn=0879697164
'''2013'''
</biblio>
# M. Tien, A. G. Meyer, D. K. Sydykova, S. J. Spielman, and C. O. Wilke (2013). Maximum allowed solvent accessibilities of residues in proteins. PLOS ONE. [http://dx.doi.org/10.1371/journal.pone.0080635 doi:10.1371/journal.pone.0080635]
# M. Tien, D. K. Sydykova, A. G. Meyer, and C. O. Wilke (2013). A simple Python library to generate model peptides. PeerJ, 1:e80. [http://dx.doi.org/10.7717/peerj.80 doi:10.7717/peerj.80]
# A. G. Meyer, E. T. Dawson, and C. O. Wilke (2013). Cross-species comparison of site-specific evolutionary-rate variation in influenza hemagglutinin. Philosophical Transactions of the Royal Society B. [http://dx.doi.org/10.1098/rstb.2012.0334 doi:10.1098/rstb.2012.033]
# A. G. Meyer and C. O. Wilke (2013). Integrating sequence variation and protein structure to identify sites under selection. Molecular Biology and Evolution. [http://dx.doi.org/10.1093/molbev/mss217 doi:10.1093/molbev/mss217]
 
'''2012'''
# M. P. Scherrer, A. G. Meyer and C. O. Wilke (2012). Modeling coding-sequence evolution within the context of residue solvent accessibility. BMC Evolutionary Biology. [http://dx.doi.org/10.1186/1471-2148-12-179 doi:10.1186/1471-2148-12-179]
# A. Reba, A. G. Meyer and J. E. Barrick (2012) Computational tests of a thermal cycling strategy to isolate more complex functional nucleic acid motifs from random sequence pools by in vitro selection. In: C. Adami et al. (eds.). Artificial Life XIII: Proceedings of the Thirteenth International Conference on the Synthesis and Simulation of Living Systems. pp 473-480. Cambridge, MA: MIT Press. Awarded Best Synthetic Biology Paper. [http://dx.doi.org/10.7551/978-0-262-31050-5-ch062 doi:10.7551/978-0-262-31050-5-ch062]


==Useful links==
'''Before 2012'''
*[[OpenWetWare:Welcome|Introductory tutorial]]
# Y. G. Celebi, R. L. Lichti, H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, J. E. Vernon, P. J. C. King and S. F. J. Cox (2009). Muonium transitions in 4H silicon carbide. Physica B, 404, 845-84. [http://dx.doi.org/10.1016/j.physb.2008.11.155 doi:10.1016/j.physb.2008.11.155]
*[[Help|OpenWetWare help pages]]
# H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, R. L. Lichti, K. H. Chow, P. J. C. King and S. F. J. Cox (2007). Charge-state transitions of muonium in 6H silicon carbide. Physica B, 401-402, 631-634. [http://dx.doi.org/10.1016/j.physb.2007.09.039 doi:10.1016/j.physb.2007.09.039]

Revision as of 01:18, 23 March 2014

Contact Info

Austin G. Meyer (In Taos, NM)

Summary

I am currently in Lubbock, TX attending medical school at Texas Tech University Health Sciences Center. I will be returning to the lab full time in the summer of 2014 to complete my final year at UT.

I am member of the lab of Dr. Claus Wilke at the University of Texas at Austin.

Visit my research website here.

My personal website is generally kept more up to date and in depth on my work.

Education

  • In Progress (2017), MD, Texas Tech University Health Sciences Center
  • In Progress (2014), PhD Biochemistry, University of Texas at Austin
  • 2010, MS Structural Biology, Texas Tech University Health Sciences Center
  • 2008, BS Physics, Texas Tech University
  • 2008, BA Philosophy, Texas Tech University

Research interests

  1. Quantitative Biology - In particular modeling biological phenomena and making predictions from simulations.
  2. Structural Biology and Biophysics
  3. Bio-medical Data Science - At the intersection of traditional fields like biology, medicine, statistics, and computer science. I think this will be the next revolution in science and technology. We are already seeing steps in this direction with important data troves coming from the Affordable Care Act's electronic health record mandates and the 1000 genomes project.
  4. Experimental Molecular Biology and Molecular Evolution - Exploiting natural processes to technological ends.

Publications

2014

  1. V. Sridhara, A. G. Meyer, J. E. Barrick, P. Ravikumar, D. Segre, and C. O. Wilke (submitted to Molecular BioSystems). Predicting bacterial growth conditions from metabolic output by flux balance analysis. biorxiv.org/content/early/2014/01/31/002287
  2. A. G. Meyer, S. L. Sawyer, A. D. Ellington, and C. O. Wike (2014). Analyzing Machupo virus-receptor binding by molecular dynamics simulations. PeerJ, 2:e266. doi:10.7717/peerj.266
  3. K. Fuson, A. Rice, R. Mahling, A. Snow, K. Nayak, P. Shanbhogue, A. G. Meyer, G. Redpath, A. Hinderliter, S. T. Cooper and R. B. Sutton (2014). Alternate splicing of dysferlin C2A confers Ca2+-dependent and Ca2+-independent binding for membrane repair. Structure. doi:10.1016/j.str.2013.10.001

2013

  1. M. Tien, A. G. Meyer, D. K. Sydykova, S. J. Spielman, and C. O. Wilke (2013). Maximum allowed solvent accessibilities of residues in proteins. PLOS ONE. doi:10.1371/journal.pone.0080635
  2. M. Tien, D. K. Sydykova, A. G. Meyer, and C. O. Wilke (2013). A simple Python library to generate model peptides. PeerJ, 1:e80. doi:10.7717/peerj.80
  3. A. G. Meyer, E. T. Dawson, and C. O. Wilke (2013). Cross-species comparison of site-specific evolutionary-rate variation in influenza hemagglutinin. Philosophical Transactions of the Royal Society B. doi:10.1098/rstb.2012.033
  4. A. G. Meyer and C. O. Wilke (2013). Integrating sequence variation and protein structure to identify sites under selection. Molecular Biology and Evolution. doi:10.1093/molbev/mss217

2012

  1. M. P. Scherrer, A. G. Meyer and C. O. Wilke (2012). Modeling coding-sequence evolution within the context of residue solvent accessibility. BMC Evolutionary Biology. doi:10.1186/1471-2148-12-179
  2. A. Reba, A. G. Meyer and J. E. Barrick (2012) Computational tests of a thermal cycling strategy to isolate more complex functional nucleic acid motifs from random sequence pools by in vitro selection. In: C. Adami et al. (eds.). Artificial Life XIII: Proceedings of the Thirteenth International Conference on the Synthesis and Simulation of Living Systems. pp 473-480. Cambridge, MA: MIT Press. Awarded Best Synthetic Biology Paper. doi:10.7551/978-0-262-31050-5-ch062

Before 2012

  1. Y. G. Celebi, R. L. Lichti, H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, J. E. Vernon, P. J. C. King and S. F. J. Cox (2009). Muonium transitions in 4H silicon carbide. Physica B, 404, 845-84. doi:10.1016/j.physb.2008.11.155
  2. H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, R. L. Lichti, K. H. Chow, P. J. C. King and S. F. J. Cox (2007). Charge-state transitions of muonium in 6H silicon carbide. Physica B, 401-402, 631-634. doi:10.1016/j.physb.2007.09.039