User:Austin G. Meyer: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
 
(16 intermediate revisions by the same user not shown)
Line 8: Line 8:


==Summary==
==Summary==
I am currently in Lubbock, TX attending medical school at Texas Tech University Health Sciences Center.  I will be returning to lab full time in the summer of 2014 to complete my final year at UT.
I am currently a postdoctoral fellow at the University of Texas at Austin.  I will be returning to medical school full time in the summer of 2015 at Texas Tech University Health Sciences Center.


I am member of the lab of Dr. [http://wilke.openwetware.org/ Claus Wilke] at the University of Texas at Austin.
I am member of the lab of Dr. [http://wilke.openwetware.org/ Claus Wilke].


Visit my research website [http://www.meyerlab.org here].
Visit my research website [http://www.meyerlab.org here].
Line 18: Line 18:
==Education==
==Education==
<!--Include info about your educational background-->
<!--Include info about your educational background-->
* ''In Progress (2016)'', MD, Texas Tech University Health Sciences Center
* ''In Progress (2017)'', MD, Texas Tech University Health Sciences Center
* ''In Progress (2014)'', PhD Biochemistry, University of Texas at Austin
* 2014, PhD Biochemistry, University of Texas at Austin
* 2010, MS Structural Biology, Texas Tech University Health Sciences Center
* 2010, MS Structural Biology, Texas Tech University Health Sciences Center
* 2008, BS Physics, Texas Tech University
* 2008, BS Physics, Texas Tech University
Line 27: Line 27:
<!-- Feel free to add brief descriptions to your research interests as well -->
<!-- Feel free to add brief descriptions to your research interests as well -->
# Quantitative Biology - In particular modeling biological phenomena and making predictions from simulations.
# Quantitative Biology - In particular modeling biological phenomena and making predictions from simulations.
# Structural Biology and Biophysics
# Bio-medical Data Science - At the intersection of traditional fields like biology, medicine, statistics, and computer science.  I think this will be the next revolution in science and technology.  We are already seeing steps in this direction with important data troves coming from the Affordable Care Act's electronic health record mandates and the 1000 genomes project.
# Experimental Molecular Biology and Molecular Evolution - Exploiting natural processes to technological ends.
# Experimental Molecular Biology and Molecular Evolution - Exploiting natural processes to technological ends.
# Structural Biology and Biophysics
 
# Quantitative and Data Science - At the intersection of traditional fields like statistics and computer science. I think this will be the next revolution in science and technology. We are already seeing steps in this direction with obvious examples coming from the Large Hadron Collider and the Genomics revolution, and less obvious, but potentially more important data troves coming from social networks and relatively passive internet browsing.
==Publications==
'''2014'''
# A. H. Kachroo, J. M. Laurent, C. M. Yellman, '''A. G. Meyer''', C. O. Wilke and E. M. Marcotte (in review at Science). Systematic humanization of yeast genes reveals conserved functions and genetic modularity.
# J. E. Barrick, G. Colburn, D. E. Deatherage, C. C. Traverse, M. D. Strand, J. J Borges, D. D. Knoester, A. Reba and '''A. G. Meyer''' (accepted to BMC Genomics). Identifying structural variation in haploid microbial genomes from short-read re-sequencing data using breseq.
# V. Sridhara, '''A. G. Meyer''', J. E. Barrick, P. Ravikumar, D. Segre, and C. O. Wilke (2014). Predicting bacterial growth conditions from metabolic output by flux balance analysis. PLOS ONE. [http://biorxiv.org/content/early/2014/01/31/002287 biorxiv.org/content/early/2014/01/31/002287]
# A. Shahmoradi, D. K. Sydykova, S. J. Spielman, E. L. Jackson, E. T. Dawson, '''A. G. Meyer''', and C. O. Wilke. Predicting evolutionary site variability from structure in viral proteins: buriedness, flexibility, and design.  Journal of Molecular Evolution.[http://dx.doi.org/10.1007/s00239-014-9644-x doi:10.1007/s00239-014-9644-x]
# '''A. G. Meyer''', S. L. Sawyer, A. D. Ellington, and C. O. Wike (2014). Analyzing Machupo virus-receptor binding by molecular dynamics simulations. PeerJ, 2:e266. [http://dx.doi.org/10.7717/peerj.266 doi:10.7717/peerj.266]
# K. Fuson, A. Rice, R. Mahling, A. Snow, K. Nayak, P. Shanbhogue, '''A. G. Meyer''', G. Redpath, A. Hinderliter, S. T. Cooper and R. B. Sutton (2014). Alternate splicing of dysferlin C2A confers Ca2+-dependent and Ca2+-independent binding for membrane repair. Structure. [http://dx.doi.org/10.1016/j.str.2013.10.001 doi:10.1016/j.str.2013.10.001]
 
'''2013'''
# M. Tien, '''A. G. Meyer''', D. K. Sydykova, S. J. Spielman, and C. O. Wilke (2013). Maximum allowed solvent accessibilities of residues in proteins. PLOS ONE. [http://dx.doi.org/10.1371/journal.pone.0080635 doi:10.1371/journal.pone.0080635]
# M. Tien, D. K. Sydykova, '''A. G. Meyer''', and C. O. Wilke (2013). A simple Python library to generate model peptides. PeerJ, 1:e80. [http://dx.doi.org/10.7717/peerj.80 doi:10.7717/peerj.80]
# '''A. G. Meyer''', E. T. Dawson, and C. O. Wilke (2013). Cross-species comparison of site-specific evolutionary-rate variation in influenza hemagglutinin. Philosophical Transactions of the Royal Society B. [http://dx.doi.org/10.1098/rstb.2012.0334 doi:10.1098/rstb.2012.033]
# '''A. G. Meyer''' and C. O. Wilke (2013). Integrating sequence variation and protein structure to identify sites under selection. Molecular Biology and Evolution. [http://dx.doi.org/10.1093/molbev/mss217 doi:10.1093/molbev/mss217]
 
'''2012'''
# M. P. Scherrer, '''A. G. Meyer''' and C. O. Wilke (2012). Modeling coding-sequence evolution within the context of residue solvent accessibility. BMC Evolutionary Biology. [http://dx.doi.org/10.1186/1471-2148-12-179 doi:10.1186/1471-2148-12-179]
# A. Reba, '''A. G. Meyer''' and J. E. Barrick (2012) Computational tests of a thermal cycling strategy to isolate more complex functional nucleic acid motifs from random sequence pools by in vitro selection. In: C. Adami et al. (eds.). Artificial Life XIII: Proceedings of the Thirteenth International Conference on the Synthesis and Simulation of Living Systems. pp 473-480. Cambridge, MA: MIT Press. Awarded Best Synthetic Biology Paper. [http://dx.doi.org/10.7551/978-0-262-31050-5-ch062 doi:10.7551/978-0-262-31050-5-ch062]
 
'''Before 2012'''
# Y. G. Celebi, R. L. Lichti, H. N. Bani-Salameh, '''A. G. Meyer''', B. R. Carroll, J. E. Vernon, P. J. C. King and S. F. J. Cox (2009). Muonium transitions in 4H silicon carbide. Physica B, 404, 845-84. [http://dx.doi.org/10.1016/j.physb.2008.11.155 doi:10.1016/j.physb.2008.11.155]
# H. N. Bani-Salameh, '''A. G. Meyer''', B. R. Carroll, R. L. Lichti, K. H. Chow, P. J. C. King and S. F. J. Cox (2007). Charge-state transitions of muonium in 6H silicon carbide. Physica B, 401-402, 631-634. [http://dx.doi.org/10.1016/j.physb.2007.09.039 doi:10.1016/j.physb.2007.09.039]

Latest revision as of 16:45, 18 November 2014

Contact Info

Austin G. Meyer (In Taos, NM)

Summary

I am currently a postdoctoral fellow at the University of Texas at Austin. I will be returning to medical school full time in the summer of 2015 at Texas Tech University Health Sciences Center.

I am member of the lab of Dr. Claus Wilke.

Visit my research website here.

My personal website is generally kept more up to date and in depth on my work.

Education

  • In Progress (2017), MD, Texas Tech University Health Sciences Center
  • 2014, PhD Biochemistry, University of Texas at Austin
  • 2010, MS Structural Biology, Texas Tech University Health Sciences Center
  • 2008, BS Physics, Texas Tech University
  • 2008, BA Philosophy, Texas Tech University

Research interests

  1. Quantitative Biology - In particular modeling biological phenomena and making predictions from simulations.
  2. Structural Biology and Biophysics
  3. Bio-medical Data Science - At the intersection of traditional fields like biology, medicine, statistics, and computer science. I think this will be the next revolution in science and technology. We are already seeing steps in this direction with important data troves coming from the Affordable Care Act's electronic health record mandates and the 1000 genomes project.
  4. Experimental Molecular Biology and Molecular Evolution - Exploiting natural processes to technological ends.

Publications

2014

  1. A. H. Kachroo, J. M. Laurent, C. M. Yellman, A. G. Meyer, C. O. Wilke and E. M. Marcotte (in review at Science). Systematic humanization of yeast genes reveals conserved functions and genetic modularity.
  2. J. E. Barrick, G. Colburn, D. E. Deatherage, C. C. Traverse, M. D. Strand, J. J Borges, D. D. Knoester, A. Reba and A. G. Meyer (accepted to BMC Genomics). Identifying structural variation in haploid microbial genomes from short-read re-sequencing data using breseq.
  3. V. Sridhara, A. G. Meyer, J. E. Barrick, P. Ravikumar, D. Segre, and C. O. Wilke (2014). Predicting bacterial growth conditions from metabolic output by flux balance analysis. PLOS ONE. biorxiv.org/content/early/2014/01/31/002287
  4. A. Shahmoradi, D. K. Sydykova, S. J. Spielman, E. L. Jackson, E. T. Dawson, A. G. Meyer, and C. O. Wilke. Predicting evolutionary site variability from structure in viral proteins: buriedness, flexibility, and design. Journal of Molecular Evolution.doi:10.1007/s00239-014-9644-x
  5. A. G. Meyer, S. L. Sawyer, A. D. Ellington, and C. O. Wike (2014). Analyzing Machupo virus-receptor binding by molecular dynamics simulations. PeerJ, 2:e266. doi:10.7717/peerj.266
  6. K. Fuson, A. Rice, R. Mahling, A. Snow, K. Nayak, P. Shanbhogue, A. G. Meyer, G. Redpath, A. Hinderliter, S. T. Cooper and R. B. Sutton (2014). Alternate splicing of dysferlin C2A confers Ca2+-dependent and Ca2+-independent binding for membrane repair. Structure. doi:10.1016/j.str.2013.10.001

2013

  1. M. Tien, A. G. Meyer, D. K. Sydykova, S. J. Spielman, and C. O. Wilke (2013). Maximum allowed solvent accessibilities of residues in proteins. PLOS ONE. doi:10.1371/journal.pone.0080635
  2. M. Tien, D. K. Sydykova, A. G. Meyer, and C. O. Wilke (2013). A simple Python library to generate model peptides. PeerJ, 1:e80. doi:10.7717/peerj.80
  3. A. G. Meyer, E. T. Dawson, and C. O. Wilke (2013). Cross-species comparison of site-specific evolutionary-rate variation in influenza hemagglutinin. Philosophical Transactions of the Royal Society B. doi:10.1098/rstb.2012.033
  4. A. G. Meyer and C. O. Wilke (2013). Integrating sequence variation and protein structure to identify sites under selection. Molecular Biology and Evolution. doi:10.1093/molbev/mss217

2012

  1. M. P. Scherrer, A. G. Meyer and C. O. Wilke (2012). Modeling coding-sequence evolution within the context of residue solvent accessibility. BMC Evolutionary Biology. doi:10.1186/1471-2148-12-179
  2. A. Reba, A. G. Meyer and J. E. Barrick (2012) Computational tests of a thermal cycling strategy to isolate more complex functional nucleic acid motifs from random sequence pools by in vitro selection. In: C. Adami et al. (eds.). Artificial Life XIII: Proceedings of the Thirteenth International Conference on the Synthesis and Simulation of Living Systems. pp 473-480. Cambridge, MA: MIT Press. Awarded Best Synthetic Biology Paper. doi:10.7551/978-0-262-31050-5-ch062

Before 2012

  1. Y. G. Celebi, R. L. Lichti, H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, J. E. Vernon, P. J. C. King and S. F. J. Cox (2009). Muonium transitions in 4H silicon carbide. Physica B, 404, 845-84. doi:10.1016/j.physb.2008.11.155
  2. H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, R. L. Lichti, K. H. Chow, P. J. C. King and S. F. J. Cox (2007). Charge-state transitions of muonium in 6H silicon carbide. Physica B, 401-402, 631-634. doi:10.1016/j.physb.2007.09.039