User:Austin G. Meyer

From OpenWetWare

Revision as of 19:45, 18 November 2014 by Austin G. Meyer (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search


Contact Info

Austin G. Meyer (In Taos, NM)
Austin G. Meyer (In Taos, NM)


I am currently a postdoctoral fellow at the University of Texas at Austin. I will be returning to medical school full time in the summer of 2015 at Texas Tech University Health Sciences Center.

I am member of the lab of Dr. Claus Wilke.

Visit my research website here.

My personal website is generally kept more up to date and in depth on my work.


  • In Progress (2017), MD, Texas Tech University Health Sciences Center
  • 2014, PhD Biochemistry, University of Texas at Austin
  • 2010, MS Structural Biology, Texas Tech University Health Sciences Center
  • 2008, BS Physics, Texas Tech University
  • 2008, BA Philosophy, Texas Tech University

Research interests

  1. Quantitative Biology - In particular modeling biological phenomena and making predictions from simulations.
  2. Structural Biology and Biophysics
  3. Bio-medical Data Science - At the intersection of traditional fields like biology, medicine, statistics, and computer science. I think this will be the next revolution in science and technology. We are already seeing steps in this direction with important data troves coming from the Affordable Care Act's electronic health record mandates and the 1000 genomes project.
  4. Experimental Molecular Biology and Molecular Evolution - Exploiting natural processes to technological ends.



  1. A. H. Kachroo, J. M. Laurent, C. M. Yellman, A. G. Meyer, C. O. Wilke and E. M. Marcotte (in review at Science). Systematic humanization of yeast genes reveals conserved functions and genetic modularity.
  2. J. E. Barrick, G. Colburn, D. E. Deatherage, C. C. Traverse, M. D. Strand, J. J Borges, D. D. Knoester, A. Reba and A. G. Meyer (accepted to BMC Genomics). Identifying structural variation in haploid microbial genomes from short-read re-sequencing data using breseq.
  3. V. Sridhara, A. G. Meyer, J. E. Barrick, P. Ravikumar, D. Segre, and C. O. Wilke (2014). Predicting bacterial growth conditions from metabolic output by flux balance analysis. PLOS ONE.
  4. A. Shahmoradi, D. K. Sydykova, S. J. Spielman, E. L. Jackson, E. T. Dawson, A. G. Meyer, and C. O. Wilke. Predicting evolutionary site variability from structure in viral proteins: buriedness, flexibility, and design. Journal of Molecular Evolution.doi:10.1007/s00239-014-9644-x
  5. A. G. Meyer, S. L. Sawyer, A. D. Ellington, and C. O. Wike (2014). Analyzing Machupo virus-receptor binding by molecular dynamics simulations. PeerJ, 2:e266. doi:10.7717/peerj.266
  6. K. Fuson, A. Rice, R. Mahling, A. Snow, K. Nayak, P. Shanbhogue, A. G. Meyer, G. Redpath, A. Hinderliter, S. T. Cooper and R. B. Sutton (2014). Alternate splicing of dysferlin C2A confers Ca2+-dependent and Ca2+-independent binding for membrane repair. Structure. doi:10.1016/j.str.2013.10.001


  1. M. Tien, A. G. Meyer, D. K. Sydykova, S. J. Spielman, and C. O. Wilke (2013). Maximum allowed solvent accessibilities of residues in proteins. PLOS ONE. doi:10.1371/journal.pone.0080635
  2. M. Tien, D. K. Sydykova, A. G. Meyer, and C. O. Wilke (2013). A simple Python library to generate model peptides. PeerJ, 1:e80. doi:10.7717/peerj.80
  3. A. G. Meyer, E. T. Dawson, and C. O. Wilke (2013). Cross-species comparison of site-specific evolutionary-rate variation in influenza hemagglutinin. Philosophical Transactions of the Royal Society B. doi:10.1098/rstb.2012.033
  4. A. G. Meyer and C. O. Wilke (2013). Integrating sequence variation and protein structure to identify sites under selection. Molecular Biology and Evolution. doi:10.1093/molbev/mss217


  1. M. P. Scherrer, A. G. Meyer and C. O. Wilke (2012). Modeling coding-sequence evolution within the context of residue solvent accessibility. BMC Evolutionary Biology. doi:10.1186/1471-2148-12-179
  2. A. Reba, A. G. Meyer and J. E. Barrick (2012) Computational tests of a thermal cycling strategy to isolate more complex functional nucleic acid motifs from random sequence pools by in vitro selection. In: C. Adami et al. (eds.). Artificial Life XIII: Proceedings of the Thirteenth International Conference on the Synthesis and Simulation of Living Systems. pp 473-480. Cambridge, MA: MIT Press. Awarded Best Synthetic Biology Paper. doi:10.7551/978-0-262-31050-5-ch062

Before 2012

  1. Y. G. Celebi, R. L. Lichti, H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, J. E. Vernon, P. J. C. King and S. F. J. Cox (2009). Muonium transitions in 4H silicon carbide. Physica B, 404, 845-84. doi:10.1016/j.physb.2008.11.155
  2. H. N. Bani-Salameh, A. G. Meyer, B. R. Carroll, R. L. Lichti, K. H. Chow, P. J. C. King and S. F. J. Cox (2007). Charge-state transitions of muonium in 6H silicon carbide. Physica B, 401-402, 631-634. doi:10.1016/j.physb.2007.09.039
Personal tools