User:Brian P. Josey/Notebook/Junior Lab/2010/11/22: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 7: Line 7:
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->
==Balmer Series==
==Balmer Series==
This week, I'm going to do the Balmer series lab to measure the wavelengths of both hydrogen and deuterium gases.
This week, we attempted to measure the Rydberg constant in the Balmer series lab. The Rydberg constant is a constant that is used in a formula for predicting the wavelength of a photon that is released when an excited electron drops to a lower level, or the wavelength needed to raise an electron from a lower to a more excited state. To do this, we measured the well known Balmer series, which occurs when the electrons drop from a higher excited state to the second orbital (n=2 orbital). To do this, we first calibrated our instruments with a Mercury tube, and known values for wavelength, and then measured the wavelengths of light for both hydrogen and deuterium.
 
To do this, we first have to measure the known wavelengths of Mercury to calibrate the telescope and then measure the wavelengths of the hydrogen and deuterium.


==Equipment==
==Equipment==

Revision as of 11:23, 5 December 2010

Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Balmer Series

This week, we attempted to measure the Rydberg constant in the Balmer series lab. The Rydberg constant is a constant that is used in a formula for predicting the wavelength of a photon that is released when an excited electron drops to a lower level, or the wavelength needed to raise an electron from a lower to a more excited state. To do this, we measured the well known Balmer series, which occurs when the electrons drop from a higher excited state to the second orbital (n=2 orbital). To do this, we first calibrated our instruments with a Mercury tube, and known values for wavelength, and then measured the wavelengths of light for both hydrogen and deuterium.

Equipment

  • Constant deviation spectrometer
  • Spectrum Tube Power Supply Model SP200, 5000 volts, 10MA.
  • Tubes containing vapor of
    • mercury
    • hydrogen
    • deuterium