User:Caitlin Barrett/Notebook/Biology 210 at AU

From OpenWetWare
Jump to navigationJump to search

2/20/14 Lab #4- Plantae and Fungi


    • Note: For 3/5 of our transect plants where we could not find seeds or evidence of flowers or other reproductive parts because it was winter and below freezing temperatures when we harvested these plants. We can assume that with the exception of our #1 and #2 Transect plants which we have determined are Gymnosperms, the remaining three plants are currently not in there optimal blooming time which explains the absence of flowers or seeds.

Plant #1

Plant #2

Plant #3

Plant #4

Plant #5


-Fungi Sporangia are formed from hyphae. They contain spores that can be released. When these spores are released they can perform asexual reproduction. Without these structures, the fungi would not be able to reproduce.

-We did not find any agar on our agar plates.

    • Note: I uploaded a picture of "Table 1: Transect Plants" but if you would like me to rewrite out all of the data so that it would be easier to read please let me know.

CB

2/20/14- Microbiology and Identifying Bacteria with DNA Lab #3

1. There may have been Archaea living on the plates. Archaea tend to grow in the most extreme environments, such as the Hot Springs in Yellowstone or the bottom of the ocean. But the bacteria plates are not designed to be a hostile environment. Therefore if there are any Archaea living on the plates, there will be a limited amount and they will not have high fitness because this is not their ideal environment.

2. The appearance and the smell of the Hay Infusion Culture may change from week to week due to the amount of bacteria that is continuing to grow on the plates as well as the plant material that is decomposing. The as the plant material breaks down it makes the water cloudy and can make the water have a darker color.

3. The difference between the tet plates and the non tet plates was the tet colonies were larger than the non-tet colonies. The tet-colonies are also more circular in shape. Futhermore, the tet-colonies were orange and the non-tet colonies were several colors (including orange).

4. The specific color growth on the tet-plates indicates that only specific types of bacteria could only grow on these types of plates. Also, the larger size of the colonies on the tet-plates indicates that that organisms that were able to grown on this plate were better suited for growing on this plate rather than the non-tet plates. If the bacteria was equally suited for growing on both tet and non-tet plates the size of the colonies of both plates would be of equal size.

5. The tetracycline limited the number of bacteria present on the plates. The maximum number of colonies counted on the non-tet plates was 180 ( not counting the lawn that was observed as well). On the tet plates was 53 colonies. There were no fungi found on either plate.

6. After observing both plates, we determined that there were 2 species of bacteria that were unaffected.

7. Tetracyline inhibits a lot of enzyme reactions that are essential for the vital processes of bacterial cells. Tetracycline works by binds specifically to the 30s ribosome of bacteria. This binding prevents the attachment of the aminoacyl tRNA to the RNA-ribosome complex while also inhibiting the other steps of the protein biosynthesis. It can also alter the cytoplasmic membrane which causes leakages of nucleotides and other compounds out of the cell. This altering of the cytoplasmic membrane does not directly kill the bacteria, but instead inhibits it.Tetracycline are most widely know for their efficiacy against a wide range of Gram positive and Gram negative bacteria, richettsia, spirochetes and large viruses. (Klajn, Rafal, 2004).

References 1. Klajn, Rafal (2004). Antimicrobial properties: Toxicity of tetracyclines towards bacteria: The least concentration of a tetracycline completely inhibiting growth of bacteria (mg per ml). Retrived from: http://www.chm.bris.ac.uk/motm/tetracycline/antimicr.htm

CB


2/9/14- Identifying Algae and Proists Lab #2 Description of Hay Infusion Culture: The culture has a yellow/orange tint. There are several small bubbles on the top of the liquid. There is also some plant debris in the culture. There are some small black dots on the top of the culture, which could be mold spots. The culture smells foul, and has a similar smell to mold.

-Organisms could differ near vs far away from plant matter because some organisms have adapted to survive off of the plant matter’s nutrients. Other organisms do not need the plant matter’s nutrients in order to survive and therefore they may suffer more in areas where there is a maximum carrying capacity. These organisms may need to be closer the surface and need more sunlight in order to survive.

Organisms observed in culture: 1. Peranema, mobile, protist, not photosynthesizing, 50um 2. Euglena, mobile, protist, can photosynthesize, 40um

3. Actinoshpaerium, mobile, protist, not photosynthesizing, 75um 

Area 2: Bottom of jar 1. Peranema, mobile, protist, not photosynthesizing, 50um 2. Colpidium, mobile, protist, not photosynthesizing, 60um

3. Actinoshpaerium, mobile, protist, not photosynthesizing 75um 

Note: We were unable to find 6 different organisms in our Hay Infusion Culture. Therefore, we can assume that that these organisms that were found in two different places in the culture, have adapted to survive in both niches.

How Actinoshpaerium meets all Needs of Life

1. Energy

-Feeds on small flagellates, diminutive cilates, and microscopic algae

2. Cells

-Unicellular

3. Information

-Adapt to its surroundings; It does not have a shell. It has many pseudopodia supported by axopods radiating outward from the cell body, which adhere to passing prey and allows it to roll or float about.

4. Replication

-Replicates through fission

5. Evolution

- Actinoshpaerium are subject to pressures of natural seclection. Therefore in order to survive, the Actinoshpaerium must mutate and adapt to its new environments.


-If the Hay Infusion were to be observed in another month, I would predict that the amount of protists found would be significantly decreased. This is because as the amount of nutrients available within the culture decrease, the protists would decresase and that only the strongest protists would survive. Also I would expect the amount of plant debris to decompose.

-The selective pressures on the protists are temperature constraints, limited nutrients supplies, predation by other living species, and limited carrying capacity. If a protist would be able to adapt to all of these selective pressures, then they will survive.

CB


Great job, but don't forget the last item in red about the serial dilution. 2/18/14 GHH


1-28-14 Lab #1- Diversity of Life at AU

Location: Transect is located on south side of campus, next to the tennis courts and athletic fields. The area consists of 6 wooden planting boxes with dirt separating each of the boxes. The ground is flat and consists of dark soil with a mixture of mulch and leaves.

Abiotic features: 1. Planting Boxes 2. Dirt 3. Mulch 4. Rocks 5. Chicken wire

Biotic features 1. Leafy, green plant 2. Grey colored bush 3. Leaves 4. Weeds 5. Small, green bush like weeds

CB