User:Darrell Bonn/Notebook/307L Lab book/lab 5 Summary: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 22: Line 22:
===Further comments on data and analysis===
===Further comments on data and analysis===


All calculations were done by the attached Matlab file [].  
All calculations were done by the attached Matlab file [http://openwetware.org/images/3/30/SOL.m].  


The four time (calibration) and three range data sets are shown below as well as the final speed of light calculation data.
The four time (calibration) and three range data sets are shown below as well as the final speed of light calculation data.

Revision as of 09:24, 13 October 2008

Speed of Light Lab

  • Lab Partner: Boleszek
  • Beginning with lab procedure number 10 in Gold's: [lab manual]

Summary

We set out to measure the speed of light using a pulsed LED as the light source and a photo multiplier tube as the receiver, which produced a voltage signal in response to the incoming light pulse. The outgoing pulse from the LED and resultant pulse from the PMT were fed together into a Time Amplitude Converter (TAC). This was used to convert the time delay between two pulses to a proportional voltage reading, which was then read via an oscilloscope. The time between the start of the pulse and it’s reception can then be measured, directly measuring the time delay between the LED pulse and it’s reception by the PMT. By varying the distance between LED and PMT, the time it takes light to travel the distance can be directly measured.


There is one great measurement trick to acquiring data with this setup; The TAC is very susceptible to varying input voltage levels on it’s inputs; the TAC voltage is a direct function of the voltage inputs from the pulses it is measuring. As one of these is the output for the PMT, this voltage varies greatly based on it’s distance from the LED. To account for this there is a polarizing filter on the input to the PMT. By rotating the PMT in it’s stand a crude output level control is established. By splitting off a sample of this and feeding it into the oscilloscope, it is fairly straight forward task to keep the output of the PMT roughly level.


The first data required was for calibration of the TAC. This was accomplished by running the PMT output through a series of delay cables and measuring the voltage offset. This data provided volts/nano-second time data and was acquired twice each day of the lab, once at start and once at finish. Then distance data acquisition would be acquired in units of volts/meters and the two together used to calculate speed of light Our first experiments with the equipment revealed that two error sources would most likely dominate; quantization noise from the digital oscilloscope and operator error in getting things exactly right to make as accurate a measurement as possible. With that in mind we determined to acquire 2 basic sets of distance data emphasizing small, regular changes and then repeats of large changes. For the first set, a zero point is established, then data is acquired in 10cm distance changes over a 1.5m range. This was to be repeated 5 times with the zero point changed by about 5cm each time. Then another set of up to 10 data points would be acquired taken only at a larger distance of 1 to 1.5m. It was expected that the larger steps would provide greater accuracy in relation to the operator error and that the large number of smaller measurements (oversampling) would be able to overcome the errors inherent in our instruments. Unfortunately, due to our inexperience with the wiki editing process, we weren’t aware that we had been automatically logged out and our changes to our wiki page would not be accepted. Our final save lost most of our data. What remained was only the first two of the data sets and our four calibrations. A data set from the first day was also already recorded in the analysis Matlab file I had begun, and that is also used here.


Once data was acquired, the speed of light was calculated directly from the existing data. As each data set is measured from a relative starting point, the speed of light is calculated independently for each point. All of these were then averaged together for the final result.


Speed of light = 2.93(14)E+008 m/s


Further comments on data and analysis

All calculations were done by the attached Matlab file [1].

The four time (calibration) and three range data sets are shown below as well as the final speed of light calculation data.